Chapter

2

July 2003

Data Types

Thischapter describeshow datatypesarehandled inthe SDL suite.
An overview of all supported SDL datatypesisgiven, including ex-
amples and guidelines. It is also explained how to use C/C++ and
ASN.1, in combination with the SDL suite.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 41

Chapter 2 Data Types

Introduction

An important and often difficult aspect of system design and implemen-
tation is how to handle datain the system.

The SDL suite offers several ways to use data:

o SDL-specific data types can be used

e Accessto C/C++ datatypes and functions is supported
» ASN.1 datatypes can be used

Thischapter givesan overview of all available datatypes, together with
someguidelines of how to usethese different datatypes, illustrated with
anumber of examples.

Using SDL Data Types

42

In this section, an overview is given of the datatypesthat are available
in SDL. SDL contains a number of predefined data types. Based on
these predefined typesit is possible to define user-specific data types.
Types, or according to SDL terminology, “sorts’, are defined using the
keywords newtype and endnewtype.

Example 1: Newtype definition

newtype examplel struct
a integer;
b character;
endnewtype;

A newtype definition introduces a new distinct type, which is not com-
patible with any other type. So if we would have another newtype
otherexample With exactly the same definition asexample1 above, it
would not be possible to assign avalue of example1 to avariable of
otherexample.

Itisalso possible to introduce types, syntypes, that are compatible with
their base type, but contain restrictions on the allowed value set for the
type. Syntypes are defined using the keywords syntype and
endsyntype

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

Example 2: Syntype definition

syntype example2 = integer
constants 0:10
endsyntype;

The syntype example2 isan integer type, but avariable of thistypeis
only allowed to contain values in the specified range 0 to 10. Such a
constant clauseis called arange condition. The range check is per-
formed when the SDL system isinterpreted. Without a range condition
a syntype definition just introduces a new name for the same sort.

For every sort or syntype defined in SDL, the following operators are
aways defined:

* .= (assignment)
« = (test for equality)
» /= (test for non-equality)

These operators are not mentioned among the available operatorsinthe
rest of this section. Operators are defined in SDL by atype of algebra
according to the following example:

“+” : Integer, Integer -> Integer;
num : Character -> Integer;

The double quotes around the + indicate that thisis an infix operator.
The above + takestwo integer parameters and returns an integer value.
The second operator, num, isaprefix operator taking one Character and
returning an Integer value. The operators above can be called within ex-
pressionsin, for example, task statements:

task i :
task n :

i+1;
num(’'X") ;

whereit isassumed that i and n areinteger variables. It isalso alowed
to call an infix operator as a prefix operator:

task i := “+” (1, 1);

Thismeansthesameasi:= i+1.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 43

Chapter 2 Data Types

Predefined Sorts

The predefined sortsin SDL are defined in an appendix to the SDL Rec-
ommendation Z100. Some more predefined sorts are introduced in the
Recommendation 2105, where it is specified how ASN.1 is to be used
in SDL. These types should not be used if the SDL system must con-
form to Z.100. The SDL suite also offers Telelogic-specific operators
for some types. These operators should not either be used if your SDL
system must be Z.100 compliant. The rest of this chapter describes all
predefined sorts. Unless stated otherwise, the sort is part of recommen-
dation Z.100.

Bit

The predefined Bit can only take two values, o and 1. Bit isdefined in
Z.105 for the definition of bit strings, and is not part of Z.100. The op-
eratorsthat are available for Bit values are:

"not" : Bit -> Bit

"and" : Bit, Bit -> Bit
"or" : Bit, Bit -> Bit
"xor" : Bit, Bit -> Bit
"=>" : Bit, Bit -> Bit

These operators are defined according to the following:

®* not.
inverts the bit; 0 becomes 1 and 1 becomes 0,
not 0 QiVveS 1, not 1 gives o

* and :
if both parameters are 1, theresultis 1, elseitisO,
0 and 0 QiveS 0, 0 and 1 QiveS 0, 1 and 1 Qives 1

® or.
if both parametersare 0, the result is0, elseitis 1,
0 or 0 giveS 0, 0 or 1 giveS 1, 1 or 1 Qives 1

® Xxor.
if parameters are different, theresult is 1, elseit is0,
0 xor 0 QiVES 0, 0 xor 1 giveS 1, 1 xor 1 QiVes 0

e = (implication) :
if first parameter is 1 and second is 0, theresult is O, elseitis 1,
0 =>0(iveS1, 1 => 0 QgivesSo, 0 => 1 giveS1, 1 => 1
gives 1

44 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

The Bit type has most of its properties in common with the Boolean
type, which is discussed below. By replacing o with false and 1 with
true the sorts are identical.

Bit and Boolean should be used to represent propertiesin a system that
can only take two values, like on - off. In the choice between Bit and
Boolean, Boolean is recommended except if the property to be repre-
sented is about bits and the literals o and 1 are more adequate than
false and true.

Bit_string

The predefined sort Bit string isused to represent a string or se-
guence of Bits. Bit_stringisdefinedin Z.105 to supportthe ASN.1 1T
STRING type, and is not part of Z.100. Thereis no limit on the number
of elementsin the Bit_string.

The following operators are defined in Bit_string:

mkstring : Bit -> Bit_string
length : Bit_string -> Integer
first : Bit_string -> Bit

last : Bit_string -> Bit

v/ : Bit_string, Bit_string -> Bit_string

substring : Bit_ string, Integer, Integer
-> Bit_string

bitstr : Charstring -> Bit string
hexstr : Charstring -> Bit_ string
"not" : Bit_string -> Bit string
"and" : Bit_string, Bit_string -> Bit_string
"or" : Bit_string, Bit string -> Bit_ string
"xor" : Bit_string, Bit_string -> Bit_string
=" : Bit_string, Bit string -> Bit_ string

These operators are defined as follows:

* mkstring:
This operator takes a Bit value and convertsit to aBit_string of
length 1.
mkstring (0) givesaBit_string of one element,i.e. o

* Jlength!:
The number of Bitsin the Bit_string passed as parameter.
length (bitstr(’0110’)) = 4

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 45

Chapter 2 Data Types

46

first:

Thevaueof thefirst BitintheBit_string passed as parameter. If the
length of the Bit_string is 0, then it is an error to call the first oper-
ator.

first (bitstr ('107)) =1

last .

Thevalue of thelast Bit inthe Bit_string passed as parameter. If the
length of the Bit_string is 0, then it isan error to call the last opera-
tor.

last (bitstr ('10’)) = 0

// (concatenation) :

TheresultisaBit_string with all the elementsin thefirst parameter,
followed by all the elementsin the second parameter.
bitstr(’01’)//bitstr(’10’) = bitstr(’0110")

substring:

Theresult isacopy of apart of the Bit_string passed as first param-
eter. The copy starts at the index given as second parameter. The
first Bit hasindex 0. The length of the copy is specified by the third
parameter. It is an error to try to access elements outside of the true
length of the first parameter.

substring (bitstr(’0110’), 1, 2) = Bitstr('11’)

bitstr:

This Telelogic-specific operator converts a charstring containing
only characters 0 and 1, to aBit_string with the same length and
with the Bit elements set to the corresponding values.

hexstr .

This Telelogic-specific operator converts a charstring containing
HEX values (0-9, A-F, af) to aBit_string. Each HEX valueis con-
verted to four Bit elementsin the Bit_string.

hexstr(’a’) = bitstr(’1010"),
hexstr(’8f’) = bitstr(’10001111')
not :

Theresult isaBit_string with the same length as the parameter,
where the not operator in the Bit sort has been applied to each ele-
ment, that is each element has been inverted.

not bitstr (’0110’) = bitstr (’1001’)

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

and .

Theresult isaBit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-

plying the and operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bitsin the result (if any) are
set to 0.

bitstr(’01101’) and bitstr(’101’) = bitstr(’00100’)

or .

TheresultisaBit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the or operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bitsin the result (if any) are
setto 1.

bitstr(0110’) or bitstr(’00110’) = bitstr(’01111’)

XOor .

TheresultisaBit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the xor operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bitsin the result (if any) are
setto 1.

bitstr(10100’) xor bitstr(’1001’) = bitstr(’00111’)

=> (implication) :

Theresult isaBit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-

plying the => operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bitsin the result (if any) are
setto 1.

bitstr (71100’) => bitstr (’0101’) = bitstr (’0111’)

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 47

Chapter 2 Data Types

48

It is aso possible to access Bit elementsin a Bit_string by indexing a
Bit_string variable. Assume that B isaBit_string variable. Theniitis
possible to write:

task B(2) := B(3);

Thiswould mean that Bit number 2 is assigned the value of Bit number
3inthevariable B. Isisan error to index a Bit_string outside of its
length.

Note:

Thefirst Bit in aBit_string has index 0, whereas most other string
typesin SDL start with index 1!

Boolean

The newtype Boolean can only take two values, false and true. The
operators that are available for Boolean values are:

"not" : Boolean -> Boolean

"and" : Boolean, Boolean -> Boolean
"or" : Boolean, Boolean -> Boolean
"xor" : Boolean, Boolean -> Boolean
"= : Boolean, Boolean -> Boolean

These operators are defined according to the following:

® not:
inverts the value.
not false = true
not true = false
®* and:

If both parameters are true then the result istrue, elseit isfase.

false and false = false
false and true = false
true and false = false
true and true = true

® or:
If both parameters are false then the result isfalse, elseit istrue.

false or false = false
false or true = true
true or false = true
true or true = true

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

® Xxor.
If parameters are different then theresult istrue, elseitisfalse.

false xor false = false
false xor true = true
true xor false = true
true xor true = false

e => (implication) :
If the first parameter istrue and second is false then theresult is
fase, eseitistrue.

false => false = true
false => true = true
true => false = false
true => true = true

TheBit sort, discussed above, hasmost of its propertiesin common with
the Boolean sort. By replacing o with false and 1 with true the sorts
areidentical. Normally it isrecommended to use Boolean instead of Bit;
for amore detailed discussion see “Bit” on page 44.

Character

The character sort is used to represent the ASCII characters. The
printable characters have literals according to the following example:

ra’ r_ - XY rp’ o

Note that the character + iswritten twiceintheliteral. For the non-print-
able characters, specific literal names have been included in the Char-
acter sort. The following:

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO0, SI,
DLE, DCl1l, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, 1S4, 1Is3, 1Is2, 1IS1

correspond to the characters with number 0 to 31, while the literal

DEL
corresponds to the character number 127.

The operators available in the Character sort are:

et : Character, Character -> Boolean;
"<=" : Character, Character -> Boolean;
" : Character, Character -> Boolean;
"s=" . Character, Character -> Boolean;
num : Character -> Integer;
chr : Integer -> Character;

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 49

Chapter 2 Data Types

50

The interpretation of these operators are:

<y <=, >, >= .
Theserelation operatorswork with the character numbersaccording
to the ASCII table.

num .

This operator converts a Character value to its corresponding char-
acter number. For example: num ('a’) = 65

chr .

This operator converts an Integer value to its corresponding charac-
ter. If the parameter islessthan O or bigger than 255, it isfirst taken
modulo 256 (using the mod operator in sort Integer). For example:

chr(65) = "A’

In Z.100 charactersin the range O to 127 are supported. However Tele-
logic has introduced support for characters in the range 0 to 255. This
means two things

The operator num works modulo 256, not modulo 128 asitisdefinedin
Z.100.

The following literals (128 to 255) are added to the Character sort:

E NUL, E_SOH, E _STX, E_ETX, E EOT, E_ENQ, E ACK, E_BEL,
E BS, E HT, ELF, E VT, EFF, E CR, E SO, E ST,
E DLE, E_DCl, E _DC2, E _DC3, E _DC4, E NAK, E_SYN, E_ETB,

E CAN, E EM, E SUB, E ESC, E IS4, E IS3, E IS2, E IS1,
|_'1 ‘T': |E|I |§|I |all |§|I |T|, |§|,
[101 rai Tg! [T 1® [l
|o|: ‘i': N |3|: |’|: |u|: |ﬂ|: |.|:
v, ER ver, >, 1y, 140, 'y, v,
|A|I |A|I |A|I |A|I |A|I |A|I "B, cr,
IEII IEII lﬁ:l, lﬁ:l, lil, lil, lil, Iill
P, |N|I ‘6'1 |6ll ‘6'1 ‘6'1 |6|, I,
g, l'[jl, l'[jl, l'[/jl, l'[ljl, IYII B!, R,
|é_|l |é_|l |é_|l |§_|I |é_|l |é_|l 'E', |(;|,
lél, lél, lél, |e|, lil, lil, lil, lj'_l,
‘6'1 |1:‘1|I ‘6'1 ‘6'1 ‘6'1 ‘6'1 |6|, |+|,
lgl, lfll, lfll, lﬁl, lﬁl, l-yl, lpl, Iy-l,.
Charstring

The charstring sort is used to represent strings or sequences of char-
acters. Thereisno limit for the length of a Charstring value. Charstring
literals are written as a sequence of characters enclosed between two

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

single quotes: ' abc’. If the Charstring should contain a quote () it
must be written twice.

"abcdef 01237

r$%@™ &’

r1'727'3" /* denotes 1’2’3 */

r /* empty Charstring */

The following operators are available for Charstrings:

mkstring : Character -> Charstring;
length : Charstring -> Integer;
first : Charstring -> Character;
last : Charstring -> Character;
n//m : Charstring, Charstring -> Charstring;

substring : Charstring, Integer, Integer
-> Charstring;

These operators are defined as follows:

* mkstring:
This operator takes one Character value and convertsit to a Char-
string of length 1. For example: if c isavariable of type Character,
then mkstring (c) isaCharstring containing character c.

* Jlength!:
Thisoperator takesa Charstring as parameter and returnsits number
of characters.
length ('hello’) =5

e first!:
The value of thefirst Character in the Charstring passed as parame-
ter. If the length of the Charstring is 0, then it is an error to call the

first operator.
first (‘hello’) = 'h’
e last:

The value of the last Character in the Charstring passed as parame-
ter. If the length of the Charstring is 0, then it isan error to call the
last operator.

last (’hello’) = ‘o

e // (concatenation) :
TheresultisaCharstring with al the elementsin thefirst parameter,
followed by all the elementsin the second parameter.
'he’ // "1llo’ = 'hello’.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 51

Chapter 2 Data Types

52

* substring:
Theresult isacopy of apart of the Charstring passed asfirst param-
eter. The copy starts at the index given as second parameter (Note:
first Character hasindex 1). The length of the copy is specified by
thethird parameter. It isan error to try to access elements outside of
the true length of the first parameter.
substring (’hello’, 3, 2) = '11°

Itisalso possible to access Character elementsin a Charstring by index-
ing a Charstring variable. Assume that c isa Charstring variable. Then
it is possible to write:

task C(2) := C(3);
Thiswould mean that Character number 2 isassigned the value of Char-
acter number 3in the variable c.

Note:
The first Character in a Charstring has index 1.

IA5String, NumericString, PrintableString, VisibleString

These Z.105 specific character string types are all syntypes of Char-
string with restrictions on the allowed Charactersthat may be contained
in avalue. These sorts are mainly used as a counterpart of the ASN.1
types with the same names. The restrictions are:

¢ TIA5String:
only NUL : DEL, i.e only charactersin the range 0 to 127.

® NumericString:
only or:9 and " -

* PrintableString:
Only'A':'Z', rartitgt, 10719, 1ot rrrrLayr
I+I:I/I, I:I, I=I, 1o

* VisibleString:
Onlyr o

It is recommended to use these types only in relation with ASN.1 or
TTCN. In other cases use Charstring.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

Duration, Time

The Time and buration sorts have their mgjor application areain con-
nection with timers. The first parameter in a set statement is the time
when the timer should expire. This value should be of sort Time.

Both Time and Duration have literals with the same syntax as real val-

ues. Example:

245.72 0.0032

43

The following operators are available in the Duration sort:

myn : Duration, Duration -> Duration;
mon : Duration -> Duration;
nomw : Duration, Duration -> Duration;
"k Duration, Real -> Duration;
"k Real, Duration -> Duration;
nw/m Duration, Real -> Duration;
nsn Duration, Duration -> Boolean;
men Duration, Duration -> Boolean;
"= Duration, Duration -> Boolean;
Ne=n Duration, Duration -> Boolean;

The following operators are available in the Time sort:

myn Time, Duration -> Time;
myn : Duration, Time -> Time;
mom : Time, Duration -> Time;
mom Time, Time -> Duration;
"en Time, Time -> Boolean;
Ne=n Time, Time -> Boolean;
nsn Time, Time -> Boolean;
"= Time, Time -> Boolean;

Theinterpretation of these operators are rather straightforward, asthey
correspond directly to the ordinary mathematical operators for real
numbers. Thereisone“operator” in SDL that returnsaTimevalue; now
which returns the current global system time.

Time should be used to denote “apoint in time”, while Duration should
be used to denote a“time interval”. SDL does not specify what the unit
of timeis. Inthe SDL suite, the time unit is usually 1 second.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines

53

Chapter 2 Data Types

54

Example 3: Timers in SDL

SET (now + 2.5, MyTimer)

After the above statement, SDL timer myTimer will expire after 2.5
time units (usually seconds) from now.

Y ou should note that according to SDL, Time and Duration (and Real)
possess the true mathematical properties of real numbers. In an imple-
mentation, however, there are of course limits on the range and preci-
sion of these values.

Integer, Natural

The 1nteger sortin SDL isused to represent the mathematical integers.
Natural isasyntype of Integer, allowing only integers greater than or
equal to zero.

Integer literals are defined using the ordinary integer syntax. Example:

0 5 173 1000000
Negative integers are obtained by using the unary - operator given be-
low. The following operators are defined in the Integer sort:

e : Integer -> Integer;
" : Integer, Integer -> Integer;
e : Integer, Integer -> Integer;
xn : Integer, Integer -> Integer;
n/m : Integer, Integer -> Integer;
"mod" : Integer, Integer -> Integer;
"rem" : Integer, Integer -> Integer;
et : Integer, Integer -> Boolean;
" : Integer, Integer -> Boolean;
Me=" : Integer, Integer -> Boolean;
"s=" : Integer, Integer -> Boolean;
float : Integer -> Real;

fix : Real -> Integer;

The interpretation of these operators are given below:

e - (unary, i.e. one parameter) :
Negate avalue, e.g. -5.

° +, -, * .

These operators correspond directly to their mathematical counter-
parts.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

. / .
Integer division, e.g. 10/5 = 2, 14/5 = 2, -8/5 = -1

* mod, rem :
modulus and remainder at integer division. mod aways returns a
positive value, while rem may return negative values, e.g.
14 mod 5 = 4, 14 rem 5 = 4, -14 mod 5 =1, -14 rem 5
= -4

° <, <=, >, >= :
These operators correspond directly to their mathematical counter-
parts.

e float :

This operator converts an integer value to the corresponding Real
number, for example:
float (3) = 3.0

e fix :
This operator converts areal value to the corresponding I nteger
number. It is performed by removing the decimal part of the Real
value.
fix(3.65) = 3, fix(-3.65) = -3

NULL

NULL isasort coming from ASN.1, defined in Z.105. NULL does occur
rather frequently in older protocols specified with ASN.1. ASN.1 has
later been extended with better alternatives, so NULL should normally
not be used. The sort NULL only contains one value, NULL.

Object_identifier

The Z.105-specific sort object_identifier alsocomesfrom ASN.1.
Object identifiersusually identify someglobally well-known definition,
for example aprotocol, or an encoding algorithm. Object identifiersare
often used in open-ended applications, for example in a protocol where
one party could say to the other “1 support protocol version X”. “Proto-
col version X” could beidentified by means of an object identifier.

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 55

Chapter 2 Data Types

An Object_identifier value is a sequence of Natural values. This sort
contains one literal, emptystring, that is used to represent an
Object_identifier with length 0. The operators defined in this sort are:

mkstring : Natural -> Object identifier
length : Object identifier -> Integer

first : Object_identifier -> Natural

last : Object identifier -> Natural

w//m : Object identifier, Object identifier

-> Object identifier
substring : Object identifier, Integer, Integer
-> Object identifier
append : in/out Object identifier, Natural;
(. .) : * Natural -> Object identifier

These operators are defined as follows:

* mkstring:
This operator takes one Natural value and convertsit to an
Object_identifier of length 1.
mkstring (8) givesan Object_identifier consisting of one ele-
ment, i.e. 8.

¢ length:
Thisoperator takesan Object_identifier as parameter and returnsits
number of object elements, i.e. Natural values.

length (mkstring (8)//mkstring(6)) = 2
length (emptystring) = 0
e first:

The value of the first Natural in the Object_identifier passed as pa-
rameter. If the length of the Object_identifier isO, thenitisan error
to call thefirst operator.

first (mkstring (8)//mkstring(6)) = 8

e last:
The value of the last Natural in the Object_identifier passed as pa-
rameter. If the length of the Object_identifier is0, thenitisan error
to call the last operator.
last (mkstring (8)//mkstring(6)) = 6

e // (concatenation) :
Theresult isaObject_identifier with all the elementsin the first pa-
rameter, followed by all the elementsin the second parameter.
mkstring (8) // mkstring (6) giv&san Object_identifier of
two elements, 8 followed by 6.

56 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

* substring:

Theresult isacopy of apart of the Object_identifier passed asfirst
parameter. The copy starts at the index given as second parameter

(Note: first Natural hasindex 1). The length of the copy is specified
by thethird parameter. It isan error to try to accesselementsoutside
of the true length of the first parameter.

substring (mkstring(8) //mkstring(6),2,1) =mkstring(6)

* append :

append isa Telelogic extension and can be used to add a new com-
ponent to the end of an existing Object_identifier. append takes a
variable as first parameter and a Natural value as second. The vari-
able isthen updated to include the second parameter as last compo-
nent in the Object_identifier. The reason for introducing this opera-
tor isthat:

task append(V, 12);

is much more efficient than performing the same calculation as
task V := V // mkstring(12) ;

Caution!
The append operator does not check the size constraints on the
string.

The concat operator should be used instead if you want range
checks to be performed.

o (. .):
The (. .) expression, which isaTelelogic extension, is an appli-
cation of the implicit make operator. The make operator takes a se-
guence of Natural values and returns an Object_identifier that con-
tains these value in the order they are given.
Obj_id _var := (. 1, 2, 3 .) would givean Object_identifier
containing 1, 2 and 3.

Itisalso possibleto accessthe Natural elementsin an Object_identifier
by indexing an Object_identifier variable. Assumethat cisa
Object_identifier variable. Then it is possible to write:

task C(2) := C(3);
Thiswould mean that the Natural at index 2 is assigned the value of the
Natural at index 3 in the variable c. Note that the first Natural in an

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 57

Chapter 2 Data Types

Object_identifier hasindex 1. Itisan error to index an Object_identifier
outside of its length.

58 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

Octet

The Z.105-specific sort octet isused to represent eight-bit values, i.e.
values between 0 and 255. In C thiswould correspond to unsigned char.
There are no explicit literals for the Octet sort. VValues can, however,
easily be constructed using the conversion operators i 20 and o021 dis-
cussed below.

The following operators are defined in Octet:

"not" : Octet -> Octet;
"and" : Octet, Octet -> Octet;
"or" : Octet, Octet -> Octet;
"xor" : Octet, Octet -> Octet;
=" : Octet, Octet -> Octet;
et : Octet, Octet -> Boolean;
"e=t : Octet, Octet -> Boolean;
" : Octet, Octet -> Boolean;
"= : Octet, Octet -> Boolean;
shiftl : Octet, Integer -> Octet;
shiftr : Octet, Integer -> Octet;
mn : Octet, Octet -> Octet;
m-mn : Octet, Octet -> Octet;
"k n : Octet, Octet -> Octet;
n/m : Octet, Octet -> Octet;
"mod" : Octet, Octet -> Octet;
"rem" : Octet, Octet -> Octet;
i2o : Integer -> Octet;
o2i : Octet -> Integer;
bitstr : Charstring -> Octet;
hexstr : Charstring -> Octet;

The interpretation of these operatorsis as follows:

not, and, or, Xor, => .

Apply the corresponding Bit operator for each of theeight bitsinthe
Octet. For example:

not bitstr (’00110101’) = bitstr (/11001010')

<y <=, >, >= .

Ordinary relation operators for the Octet values.

shiftl, shiftr:
These Telel ogic-specific operators are defined asleft and right shift
inC, soshiftl (a,b) isdefined asa<<b in C.

shiftl (bitstr(’1’), 4) = bitstr(’10000")
shiftr (bitstr(’1010’), 2) = bitstr (10’")
Telelogic Tau 4.5 SDL Suite Methodology Guidelines 59

Chapter 2 Data Types

* 4+, -,% /,mod, rem .
These operators are the mathematical corresponding operators. All
operations are, however, performed modulus 256.
i20(250) + i20(10) = i20(4), o2i(i20(4)-1i20(6)) = 254

e i2o0:
This Telelogic-specific operator converts an Integer value to the
corresponding Octet value.
i20 (128) = hexstr (’'80")

* 021
This Telelogic-specific operator converts an Octet value to the cor-
responding Integer value.
021 (hexstr (’80’)) = 128

* bitstr:
This Telelogic-specific operator converts a charstring containing
eight Bit values (“0” and “1") to an Octet value.
bitstr(/00000011’) = i20(3)

® hexstr:
This Telelogic-specific operator converts a charstring containing
two HEX values (“0"-*9", “a’- “f”, “A”- “F”) to an Octet value.
hexstr(’01’) = i20(1), hexstr('ff’) = i20(255)

Itisalso possible to read the individual bitsin an Octet value by index-
ing an Octet variable. The index should bein therange0to 7.

Octet_string

The Z.105-specific sort octet string representsasequenceof octet
values. Thereis no limit on the length of the sequence. The operators
defined in the Octet_string sort are:

mkstring : Octet -> Octet_string;
length : Octet_string -> Integer;
first : Octet string -> Octet;
last : Octet_string -> Octet;
w//m : Octet string, Octet string
-> Octet_string;
substring : Octet_ string, Integer, Integer
-> Octet_string;
bitstr : Charstring -> Octet_string;
hexstr : Charstring -> Octet_string;
bit string : Octet_string -> Bit_ string;
octet_string : Bit_string -> Octet_string;

60 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

These operators are defined as follows:

mkstring :

This operator takes an Octet value and convertsit to a Octet_string
of length 1.

mkstring (i2o0(10)) givesan Octet_string containing one ele-
ment.

length:

The number of Octetsin the Octet_string passed as parameter.
length (i20 (8)//i20 (6)) = 2

length (hexstr (’0£f3d88’)) = 3

length (bitstr (")) = 0

first:

Thevalue of thefirst Octet in the Octet_string passed as parameter.
If thelength of the Octet_stringisO, thenitisanerror to call thefirst
operator.

first (hexstr (’0£3d88’)) = hexstr(’0f’) (= i20(15))

last:

Thevaue of thelast Octet in the Octet_string passed as parameter.
If thelength of the Octet_stringisO, thenitisan error to call thelast
operator.

last (hexstr (’0f3d88’)) = hexstr(’88’) (= i20(136))

// (concatenation) :

Theresultisan Octet_string with al the elementsin thefirst param-
eter, followed by al the elementsin the second parameter.
hexstr(’0£f3d’)//hexstr (’884F’) = hexstr(’’'0f£3d884f"’)

substring

Theresult isacopy of apart of the Octet_string passed asfirst pa-
rameter. The copy startsat the index given as the second parameter.
Thelength of the copy is specified by the third parameter. It isan
error to try to access elements outside of the true length of the first
parameter.

substring (hexstr(’0£3d889C’), 3, 2) = hexstr(’889c’)

bitstr:

This Telelogic-specific operator converts a charstring containing
only characters 0 and 1, to an Octet_string with an appropriate
length and with the Octet elements set to the value defined in the se-
guences of eight bits. If the Charstring length is not a multiple of

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 61

Chapter 2 Data Types

62

eight, it is padded with zeros.
bitstr (’101’) = bitstr (’10100000")

* hexstr.
This Telelogic-specific operator converts a charstring containing
HEX values (0 -9, A-F, af) to an Octet_string. Each pair of HEX
values are converted to one Octet element in the Octet_string. If the
Charstring length is not amultiple of two, it is padded with a zero.
hexstr ('f’) = hexstr ('f0’)

* Dbit stringandoctet string:
These two operators convert values between Bit_string and
Octet_string.

It isalso possible to access the Octet elementsin an Octet_string by in-
dexing an Octet_string variable. Assumethat C isan Octet_string vari-
able. Then it is possible to write:

task C(2) := C(3);
Thiswould mean that the Octet at index 2 is assigned the value of Octet
atindex 3inthevariableC. Itisan error to index an Octet_string outside
of itslength.

Note:
Thefirst Octet in an Octet_string has index 1.

Pid
Thesort rid isused asareferenceto processinstances. Pid hasonly one

literal, nu11. All other values are obtained from the SDL predefined
variables self, Sender, Parent, and Of fspring.

Real

Real isused to represent the mathematical real values. In an implemen-
tation there are of course always restrictionsin size and precision of
such values. Examples of Real literals:

2.354 0.9834 23 1000023.001

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

The operators defined in the Real sort are:

mon : Real -> Real;
myn : Real, Real -> Real;
Ll : Real, Real -> Real;
"k : Real, Real -> Real;
m/nm . Real, Real -> Real;
et : Real, Real -> Boolean;
" : Real, Real -> Boolean;
"<=" : Real, Real -> Boolean;
"s=" : Real, Real -> Boolean;

All these operators have their ordinary mathematical meaning.

User Defined Sorts

All the predefined sorts and syntypes discussed in the previous section
can bedirectly used in, for example, variable declarations. In many cir-
cumstances it is however suitable to introduce new sorts and syntypes
into a system to describe certain properties of the system. A user-de-
fined sort or syntype can be used in the unit whereit isdefined, and also
inal its subunits.

Syntypes

A syntype definition introduces anew type namewhich isfully compat-
ible with the base type. This meansthat a variable of the syntype may
be used in any position where a variable of the base type may be used.
Theonly differenceisthe range check in the syntype. One exception ex-
ists. The actual parameter that correspondsto aformal in/out parameter
must be of the same syntype as the formal parameter. Otherwise proper
range tests cannot be performed.

Syntypes are useful for:

* Introducing anew name for an existing type

» Introducing a new type that has the same properties as an existing
type, but with arestricted value range

» Defining index sorts used in arrays

Example 4: Syntype definition

syntype smallint = integer
constants 0:10
endsyntype;

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 63

Chapter 2 Data Types

64

In thisexample smallint isthe new type name, integer isthe base
type, and o: 10 isthe range condition. Range conditions can be more
complex than the one above. It may consist of alist of conditions, where
each condition can be (assume x to be a suitable value):

¢ =X asinglevauex isalowed

* X same as =x

e /=X all values except x are allowed
* X all values >x are allowed

¢ >=X all values >=x are allowed

e <X all values <x are alowed

e <=X al values <=x are allowed
s X:Y al values >=x and <=y are alowed

Example 5: Syntype definition

syntype strangeint = i
constants <-5, 0:3,

endsyntype;

nteger
5, 8, >=13

Inthisexampleall values<-s, o, 1, 2, 3, 5, 8, >=13 aredlowed.

Therange check introduced in asyntypeistested in the following cases
(assuming that the variable, signal parameter, formal parameter in-
volved is defined as a syntype):

* Assignment to avariable

* Assigning avalueto asignal parameter in an output (also for theim-
plicit signals used in connection with import and remote procedure
calls)

» Assigning avalueto an 1N parameter in a procedure call

» Assigning avalueto a process parameter in a create request action

» Assigning avalueto avariable in an input

* Assigning avaueto an operator parameter (also for the operator re-
sult)

» Assigning avaueto atimer parameter in set, reset, or active

Enumeration Sorts

An enumeration sort isasort containing only the values enumerated in
the sort. If some property of the system can take arelatively small num-
ber of distinct values and each value has aname, an enumeration sort is
probably suitable to describe this property. Assume for example a key

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

with three positions; off, stand-by, and service-mode. A suitable sort to
describe this would be:

Example 6: Enumeration sort

newtype KeyPosition
literals Off, Stand by, Service_mode
endnewtype;

A variable of sort keyPosition can take any of thethree valuesin the
literal list, but no other.

Struct

Thestruct concept in SDL can be used to make an aggregate of datathat
belongs together. Similar features can be found in most programming
languages. In C, for example, it isalso called struct, whilein Pascal itis
the record concept that has these properties. If, for example, we would
like to describe a person and would like to give him a number of prop-
erties or attributes, such as name, address, and phone number, we can
write:

newtype Person struct

Name Charstring;

Address Charstring;

PhoneNumber Charstring;
endnewtype;

A struct containsanumber of components, each with aname and atype.
If we now define variables of this struct type,

dcl pl, p2 Person;
it ispossibleto work directly with complete struct values, likein assign-
ments, or in tests for equality. Also individual componentsin the struct
variable can be selected or changed.

task pl := (. ’'Peter’, 'Main Road, Smalltown’,
"+46 40 174700 .);

task BoolVar := pl = p2;

task p2 ! Name := ’'John’;

task CharstringVar := p2 ! Name;

Thefirst task is an assignment on the struct level. The right hand side,
i.e. the (. .) expression, is an application of the implicit make operator,
that ispresent in al structs. The make operator takes avalue of the first
component sort, followed by avalue of the second component sort, and

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 65

Chapter 2 Data Types

66

so on, and returns a struct value where the components are given the
corresponding values. In the example above, the component Name in
variablep1 isgiventhevalue ' peter . Thesecond task showsatest for
equality between two struct expressions. The third and fourth task
shows how to access a component in astruct. A component is selected
by writing:

VariableName ! ComponentName

Such component selection can be performed both in aexpression (then
usually called extract) and in the left hand side of an assignment (then
usually called modify).

Bit Fields

A bit field definesthe sizein bitsfor a struct component. Thisfeatureis
not part of the SDL Recommendation, but rather introduced by Telelog-
icto enablethe generation of C bit fieldsfrom SDL. Thismeansthat the
syntax and semantics of bit fields follow the C counterpart very much.

Example 7: Bit fields

newtype example struct
a Integer : 45

b UnsignedInt : 2

¢ UnsignedInt : 1

: 0

d Integer 4
e Integer;
endnewtype;

The following rules apply to bit fields:

* Themeaning of the bit field size, i.e. the : x (wherex isan integer
number) isthe same asin C. When generating C code from SDL,
the : xisjust copied tothe C struct that is generated from the SDL
struct.

e . 0inSDL istrandatedto int : 0inC.

* AsConly alows int and unsigned int for bit field components
thesameruleisvalid in SDL: only tnteger and unsignediInt
(from package ctypes) may be used.

Bit fields should only be used when it is necessary to generate C bit
fields from SDL. Bit fields should not be used as an alternative to syn-
types with a constants clause; the SDL suite does not check violations
to the size of the bit fields.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

Optional and Default values

To simplify the translation of ASN.1 typesto SDL sorts, two new fea
tures have been introduced into structs. Struct components can be op-
tional and they can have default values. Note that these features have
their major application areain connection with ASN.1 data types and
applying them in other situationsis probably not agood idea, asthey are
not standard SDL-96.

Example 8: Optional and default values

newtype example struct

a Integer optional;

b Charstring;

c Boolean := true;

d Integer = 4

e Integer optional;
endnewtype;

Thedefault valuesfor component ¢ and 4, meansthat these components
areinitialized to the given values.

An optional component may or may not be present in astruct value. Ini-
tially an optional component is not present. It becomes present when it
isassigned avalue. It is an error to access a component that is not
present. It is possibleto test if an optional component is present or not
by calling an implicit operator called

ComponentNamepresent

In the example above apresent (v) and epresent (v) can be used to
test whether components a and e are present or not, in the value stored
in variable v. A component that is present can be set to absent, i.e. not
present, again by calling the implicit operator

ComponentNameabsent

In the example above aabsent (v) and eabsent (v) can be used to set
the components to absent. Note that the absent operators are operators
without result.

Components with default values also have present and absent oper-
ators in the same way as optional components. They however do not
havethe same semanticsasfor optional components. A component with
default value always has avalue! Present and absent instead have to do
with encoding and decoding of ASN.1 values. A component that con-

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 67

Chapter 2 Data Types

68

tainsitsdefault value, i.e. isabsent, isin some encoding schemes not en-
coded.

A component with default valueisinitialized with the default value and
has present equal to false. Present can for components with default val-
ues be seen as “is explicitly assigned some value’. This means that
when a component with default valueis assigned avalue, in an assign-
ment for example, present will become true (even if the component is
assigned the default value). The absent operator can be used to set the
component back to absent. Thismeansthat the absent operator performs
two things: assigns the component the default value and sets present to
false.

According to Z.105, the make operator for a struct does not include
components that are optional or contain a default value. Optional com-
ponents always become absent and components with default values are
alwaysinitialized with their default values. The st ruct exampleinthe
previous example only contains one component that is not optional and
doesnot contain adefault value. Thismeansthat avariablev of thistype
can be assigned a struct value by:

task v := (. ‘hello’ .);
If we want to set the other components, this have to be performed in a
sequence of assignments after this assignment.

To simplify assigning a complete struct value to a struct in these cases,
Telelogic provide an aternativeinterpretation of make for astruct. You
specify that you want to use this alternative interpretation of make by
selecting Generate > Analyze > Details > Semantic Analysis > Include
optional fieldsin make operator.

The alternative make alwaystakes all components as parameters. By in-
serting an empty position you can specify that you want the component
not present or given itsdefault value. By giving avalue you specify the
value to be assigned to that component. Using the example above again
itis possibleto write:

task v := (. 1, ‘hello’, , 10, .);
This means that the first, second, and fourth components are given ex-
plicit values, while the third and fifth becomes absent.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

Choice

The new concept choiceisintroduced into SDL asameansto represent
the ASN.1 concept CHOICE. This concept can also be very useful
while developing pure SDL datatypes. The choicein SDL can be seen
asaC union with an implicit tag field.

Example 9: Choice

newtype Cl choice
a Integer;
b Charstring;
c Boolean;
endnewtype;

The example above shows a choice with three components. The inter-
pretation is that a variable of achoice type can only contain one of the
components at atime, so in the example above avalue of c1 either con-
tains an Integer vaue, a Charstring value, or a Boolean value.

Example 10: Working with a choice type

DCL var Cl, charstr Charstring;

TASK var := a : 5; /* assign component a */
TASK var!b := 'hello’; /* assign component b

(a becomes absent) */
TASK charstr := var!b; /* get component b */

The above example shows how to modify and extract components of a
choicetype. In thisrespect, choice typesareidentical to struct types, ex-
cept the a : 5 notation to denote choice values, whereas struct values are
described using (.).

Extracting a component of a choice type that is not present resultsin a
run-time error. Thereforeit is necessary to be able to determine which
component is active in a particular value. For that purpose there are a
number of implicit operators defined for a choice.

var !present
where var isavariable of achoice type, returns avalue which isthe
name of the active component. Thisis made possible by introducing an
implicit enumeration type with literals with the same names as the
choice components. Note that this enumeration typeisimplicit and

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 69

Chapter 2 Data Types

70

should not be inserted by you. Given the example above, it is allowed
to test:

var!present = b

Thisisillustrated in Figure 26.

icheck which
scomponent is
ipresent

DCL

intvar Integer,
cstrvar Charstring,
boolvar Boolean;

intvar := cstrvar := boolvar :=
varla varlb varlc

Figure 26: Check which component of a choice is present

Itisaso possibletotest if acertain component isactiveor not, by using
theimplicit boolean operators componentNamepresent. To check if
component b in the example aboveis present it isthus possible to write:

bpresent (v)
The information about which component that is active can be accessed
using the present operators, but it is not possible to changeit. Thisin-
formation is automatically updated when a component in a choice vari-
ableisassigned avalue.

The purpose of choiceisto save memory or bandwidth. Asit isknown
that only one component at atime can contain avalue, the compiler can
use overlay techniques to reduce the total memory for the type. Also
sending achoicevalueover aphysical connection savestime, compared
to sending a corresponding struct.

The choice construct is Telelogic-specific, and not part of recommenda-
tion Z.105, so if you want to write portable SDL, you should not use
choice. Choice replaces the SDL suite #UNION code generator direc-
tive. It isrecommended to replace #UNION directives by choice, asthe
SDL suite has better tool support for the latter.

Inherits

Itispossibleto create anew sort by inheriting information from another
sort. It is possible to specify which operators and literal s that should be
inherited and it is then possible to add new operators and literalsin the
new type.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

Note that it isnot really possible to change the type in itself by using
inheritance. It is, for example, not possible to add a new component to
a struct when the struct isinherited.

Our experience with inheritance so far has been that it is not as useful
asit might seem in the beginning, and that sometimes the use of inher-
itance leads to the need of qualifiersin alot of places, as many expres-
sions are no longer semantically valid.

Example 11: Inherits

newtype NewInteger inherits Integer
operators all;
endnewtype;

In the example above a new type NewInteger isintroduced. Thistype
isdistinct from Integer, i.e. an Integer expression or variable is not al-
lowed where aNewInteger isexpected, and aNewInteger expression
or variable is not allowed where an Integer is expected. Sincein the ex-
ampleall literals and operators are inherited, all theinteger literals 0, 1,
2, ..., aredso available asNewInteger literals. For operators it means
that all operators having Integer as parameter or result type are copied,
with the Integer parameter replaced with aNewInteger parameter. This
istruefor all operators, not only those defined in the Integer sort, which
may give unexpected effects, which will be illustrated below.

Example 12: Inherited operators

Thefollowing operators are some of the operators having Integer as pa-
rameter or result type:

“+” : Integer, Integer -> Integer;
“-7 : Integer -> Integer;
“mod” : Integer, Integer -> Integer;

length : Charstring -> Integer;

ThetypenNewInteger defined abovewill inherit theseand all the others
having integer as parameter or result type. Notethat length isdefined in
the Charstring sort.

“+” : NewInteger, NewInteger -> NewlInteger;
“-7 : NewInteger -> NewInteger;
“mod” : NewInteger, NewInteger -> NewlInteger;

length : Charstring -> NewInteger;

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 71

Chapter 2 Data Types

72

With thisNewInteger declaration, statements like

decision length(Charstring Var) > 5;
are no longer correct in the SDL system. It is no longer possible to de-
termine the types in the expression above. It can either be the length re-
turning integer that is tested against an integer literal, or the length re-
turning aNewInteger vauethat istested against aNewInteger literal.

It is possible to avoid this kind of problem by specifying explicitly the
operators that should be inherited.

Example 13: Inherits

newtype NewInteger inherits Integer
operators (“+n, wom owxm “/u)
endnewtype;

Now only the enumerated operators are inherited and the problem with
length that was discussed above will not occur.

Predefined Generators

Array

The predefined generator array takes two generator parameters, an in-
dex sort and a component sort. There are no restrictionsin SDL on the
index and component sort.

Example 14: Array instantiation

newtype Al Array (Character, Integer)
endnewtype;

The example above shows an instantiation of the Array generator with
Character as index sort and Integer as component sort. This means that
we now have created a data structure that contains one Integer valuefor
each possible Character value. To obtain the component value connect-
ed to acertain index valueit is possible to index the array.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

Example 15: Using an array type
dcl Var Al Al; /* Assume sort in example above */

task Var Al := (.)

3 .
task Var Integer := Var Al(’'a’);
task Var Al('x’) := 11;
decision Var Al = (. 11 .);
(true)
enddecision;

The example above shows how to work with arrays. First we have the
expression (. 3 .).Thisisan application of the make! operator de-
fined in al array instantiations. The purposeis to return an array value
with al components set to the value specified in make. The first task
abovethus assignsthe value 3 to al array components. Note that thisis
an assignment of a complete array value.

In the second task the value of the array component at index ' a isex-
tracted and assigned to the integer variable var _Integer. In the third
task the value of the array component at index ’ x’ ismodified and giv-
enthenew value 11. The second and third task show applications of the
operators extract! and modify! which are present in all array instantia-
tions. Note that the operators extract!, modify!, and make! can only be
used in theway shown in theexampleabove. Itisnot allowed to directly
use the name of these operators.

In the last statement, the decision, an equal test for two array valuesis
performed. Equal and not equal are, as well as assignment, defined for
all sortsin SDL.

The typical usage of arraysisto define a fixed number of elements of
the same sort. Often a syntype of Integer isused for theindex sort, asin
thefollowing example, wherean array of 11 Pidsisdefined with indices
0to 10.

Example 16: Typical array definition

syntype indexsort = Integer
constants 0:10
endsyntype;

newtype PidArray Array (indexsort, Pid)
endnewtype;

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 73

Chapter 2 Data Types

74

Unlike most ordinary programming languages, there are no restrictions
on theindex sort in SDL. In most programming languages the index
type must define afinite range of values possibleto enumerate. In C, for
example, the size of an array is specified as an integer constant, and the
indicesinthe array rangefrom O to the (size-1). In SDL, however, there
are no such limits.

Example 17: Array with infinite number of elements.

newtype RealArr Array (Real, Real)
endnewtype;

Having Real asindex type means that there is an infinite number of el-
ementsin the array above. It has, however, the same properties as all
other arrays discussed above. Thiskind of more advanced arrays some-
timescan beavery powerful concept that can be used for implementing,
for example, a mapping table between different entities.

Example 18: Array to implement a mapping table

newtype CharstringToPid Array (Charstring, Pid)
endnewtype;

The above type can be used to map a Charstring representing a name to
a Pid value representing the corresponding process instance.

String

The string generator takes two generator parameters, the component
sort and the name of an empty string value. A value of a String typeis
a sequence of component sort values. Thereis no restriction on the
length of the sequence. The predefined sort Charstring, for example, is
defined as an application of the String generator.

Example 19: String generator

newtype S1 String(Integer, empty)
endnewtype;

Above, a String with Integer componentsisdefined. An empty string, a
string with the length zero, is represented by the literal empty.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

The following operators are available in instantiations of String.

mkstring : Itemsort -> String
length : String -> Integer
first : String -> Itemsort
last : String -> Itemsort
w//m : String, String -> String
substring : String, Integer, Integer -> String
append : in/out String, Itemsort;

(. .) : * Ttemsort -> String

In thisenumeration of operators, String should be replaced by the string
newtype (s1 in the example above) and Itemsort should be replaced by
the component sort parameter (Integer in the example above). The op-
erators have the following behavior, with the examples based on type
String (Integer, emptyy

mkstring :

This operator takes one Itemsort value and convertsit to a String of
length 1.

mkstring (-3) givesastring of oneinteger with value -3.

length:

The number of elements, i.e. Itemsort values, in the String passed as
parameter.

length (empty) = 0, length(mkstring (2)) =1

first .

The value of the first Itemsort element in the String passed as pa-
rameter. If the length of the String is 0, then it is an error to call the
first operator.

first (mkstring (8) // mkstring (2)) = 8

last:

Thevaueof thelast Itemsort element in the String passed as param-
eter. If the length of the String is 0, then it isan error to cal thelast
operator.

last (mkstring (8) // mkstring (2)) = 2

// (concatenation) :

Theresultisa String with al the elementsin thefirst parameter, fol-
lowed by al the elementsin the second parameter.

mkstring (8) // mkstring(2) givesastring of two elements: 8
followed by 2.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 75

Chapter 2 Data Types

76

* substring:
Theresult isacopy of apart of the String passed asfirst parameter.
The copy starts at the index given as second parameter (Note: first
Itemsort element hasindex 1). The length of the copy is specified
by thethird parameter. Itisan error to try to access elements outside
of the true length of the first parameter.
substring (mkstring (8) // mkstring(2), 2, 1)
= mkstring(2)

* append :

append is a Telelogic extension and can be used to add a new com-
ponent to the end of an existing String. append takes a variable as
first parameter and a Itemsort value as second. The variableisthen
updated to include the second parameter as last component in the
String. The reason for introducing this operator is that:

task append(V, Comp) ;

is much more efficient than performing the same cal culation as
task V := V // mkstring (Comp) ;

(.)

The (. .) expression, which isaTelelogic extension, is an appli-
cation of theimplicit make operator that ispresent in all strings. The
make operator takes a sequence of Itemsort values and returns a
String that contains these value in the order they are given.

String var := (. 1, 2, 3 .) wouldgiveastring containing1,
2and 3.

It isalso possible to access Itemsort elementsin a String by indexing a
String variable. Assumethat C isaString instantiation variable. Then it
ispossible to write:

task C(2) := C(3);
Thiswould mean that Itemsort element number 2 is assigned the value
of Itemsort element number 3 in the variable C. NOTE that the first el-
ement in a String hasindex 1. It isan error to index a String outside of
itslength.

The String generator can be used to build lists of items of the sametype,
although some typical list operations are computationally quite expen-
sive, like inserting a new element in the middle of the list.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

Powerset

The Powerset generator takes one generator parameter, the item sort,
and implementsa powerset over that sort. A Powerset val ue can be seen
as. for each possiblevalue of theitem sort it indicateswhether that value
is member of the Powerset or not.

Powersets can often be used as an abstraction of other, moresimpledata
types. A 32-bit word seen asabit pattern can be modeled as a Powerset
over asyntype of Integer with therange 0:31. If, for example, 7 ismem-
ber of the powerset this means that bit number 7 is set.

Example 20: Powerset generator

syntype SmallInteger = Integer
constants 0:31
endsyntype;

newtype Pl Powerset (SmallInteger)
endnewtype;

Theonly literal for a powerset sort is empty, which represents a power-
set containing no elements. The following operators are available for a
powerset sort (replace powerset with the name of the newtype, p1 in
the example above, and 1temsort with the Itemsort parameter,
SmallInteger inthe example):

"in" : Itemsort, Powerset -> Boolean
incl : Itemsort, Powerset -> Powerset
incl : Itemsort, in/out Powerset;

del : Itemsort, Powerset -> Powerset
del : Itemsort, in/out Powerset;

length : Powerset -> Integer
take : Powerset -> Itemsort
take : Powerset, Integer -> Itemsort
et : Powerset, Powerset -> Boolean
"sn : Powerset, Powerset -> Boolean
Me=" : Powerset, Powerset -> Boolean
"= : Powerset, Powerset -> Boolean
"and" : Powerset, Powerset -> Powerset
"or" : Powerset, Powerset -> Powerset
(. .) : * Ttemsort -> Powerset

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 77

Chapter 2 Data Types

78

These operators have the following interpretation (the examples are
based on newtype p1 of the above example, and it is supposed that vari-
ablevo 1 2 of p1 containselements0, 1, and 2):

in.

This operator testsif acertain value is member of the powerset or
not.

3 in incl (3, empty) giVES true,

3 in v0_1 2 (iveSfalse, 0 in v0_1 2 QiVeStrue.

incl:

Includes avalue in the powerset. The result is a copy of the Power-
set parameter with the Itemsort parameter included. To include a
value that is already member of a powerset is a null-action.

incl (3, empty) givesaset with oneelement, 3,

incl (3, v0_1_2) givesaset with elements, 0, 1, 2, and 3.

inc1 (second operator) :

This operator isa Telelogic extensions added asit is more efficient
than the standard incl. This operator updates a powerset variable
with a new component value.

task incl(3, v0_1 2); meansthesameas

task v0O_1 2 := incl(3, v0_1 2);

del :

Deletesamember in apowerset. Theresult isacopy of the Powerset
parameter with the Itemsort parameter deleted. To delete avalue
that is not member of a powerset is anull-action.

del (o, vo_1 2) givesaset with element 1 and 2;

del (30, vO_1 2) = v0_1 2

del (second operator) :

This operator isa Telelogic extensions added asit is more efficient
than the standard del operator. This operator updates a powerset
variable by removing a component value.

task del(3, v0_1_2); meansthe sameas

task v0O_1 2 := del(3, v0_1 2);

length

The number of elements in the powerset.

length (v0_1 2) = 3, length (empty) = 0

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

take (One parameter) :

Returns one of the elements in the powerset, but it is not specified
which one.

take (v0o_1 2) givesO, 1, or 2 (unspecified which of these three)

take (two parameters) :

Elements are implicitly numbered with in the powerset from 1 to
length(). The Telelogic-specific take operator returns the element
with the number passed as second parameter. This operator can be
used to “loop” through al elements of the set, asisillustrated in

Figure 27.

DCL i=1
i, sum Integer, no=
plvar P1; sum =0

sum ;= sum +
take (plvar, i)

Figure 27: Computing the sum of all elementsin a Power set
<
A<B, isA atrue subset of B
incl (2, empty) < v0_1 2 = true,
incl (30, empty) < v0_1 2 = false

> .
A>B, is B atrue subset of A

<=

A<=B, isA asubset of B

>=

A>=B, isB asubset of A

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 79

Chapter 2 Data Types

80

* and.
Returns the intersection of the parameters, i.e. a powerset with the
element members of both parameters.
incl (2, incl (4, empty)) and v0_1 2 givesaset with one
element, visually 2.

® or.
Returnsthe union of the parameters, i.e. apowerset with the element
members of any of the parameters.
incl (2, incl (4, empty)) or vO0_ 1 2 givesaset withele-
ments, O, 1, 2, and 4.

o (.)
The (. .) expression, which isaTelelogic extension, is an appli-
cation of theimplicit make operator, that ispresent in all powersets.
The make operator takes a sequence of Itemsort values and returns
a Powerset that contains these val ues.
vo 1 2 := (. 1, 2, 3 .)wouldgiveasetincluding 1,2 and 3.

Powerset resembles the Bag operator, and normally it is better to use
Powerset. See also the discussion in “Bag” on page 80.

Bag

The Z.105-specific generator Bag is almost the same as Powerset. The
only difference isthat a bag can contain the same value several times.
In aPowerset acertain vaueis either member or not member of the set.
A Bag instantiation contains the literal empty and the same operators,
with the same behavior, as a Powerset instantiation. For details please
see “Powerset” on page 77.

A Bag contains one additional operator:

makebag : Itemsort -> Bag

* makebag:
Takes an Itemsort value and returns a Bag containing this value
(length = 1).

It is recommended to use Powerset instead of Bag, except in cases

where the number of instances of a valueisimportant. Powerset is de-
fined in Z.100, and istherefore more portable. Bag is mainly part of the
predefined data types in order to support the ASN.1 SET oF construct.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

Ref, Own, Oref, Carray

These generators are Telelogic extensions to make it possible to work
with pointers (Ref, Own, Oref) and with array with the same properties
asinC.

Own and Oref isdescribed in “ Own and ORef Generators’ on page 128
in chapter 3, Using SDL Extensions, while Ref and Carray is part of the
package ctypes described in “ C Specific Package ctypes’ on page 109.
The package ctypes a so contains SDL versions of some simple C types,
which might be helpful in some cases.

Literals
Literals, i.e. named values, can be included in newtypes.

Example 21: Literals in struct newtype

newtype Coordinates struct
x integer;
y integer;
adding
literals Origo, One;
endnewtype;

In this struct there are two named va ues (literals); origo and one. The
only way in SDL to specify the values these literals represent is to use
axioms. Axioms can be given in asection in anewtype. Thisis not fur-
ther discussed here. The SDL to C compilers provide other waysto in-
sert the values of the literals. Please see the documentation in chapter
57, The Cadvanced/Chasic SDL to C Compiler, in the User’s Manual.

Theliterals can be used in SDL actionsin the same way as expressions.

Example 22: Use of literals

dcl C1 Coordinates;

task Cl1 := Origo;
decision Cl1 /= One;

Please notethedifferencesin theinterpretation of literalsin theexample
above and in the description of enumeration types, see “ Enumeration
Sorts’ on page 64. In an enumeration type each literal introduces anew
distinct value and the set of literals defines the possible values for the

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 81

Chapter 2 Data Types

82

type. In the struct example above, the type and the set of possible values
for thetypeisdefined by the struct definition. Theliteralshereonly give
names on already existing values.

An alternative that might be more clear, isto use literalsin the case of
an enumeration type and use operators without parameters (Telelogic
extension) in other cases, like the struct above.

Operators
Operators can be added to a newtype in the same way as literals.

Example 23: Operators in struct newtype

newtype Coordinates struct
x integer;
y integer;

adding
operators
“4” : Coordinates, Coordinates -> Coordinates;
length : Coordinates -> Real;
endnewtype;

Telelogic has extended the operators with a number of new features to
make them moreflexible and to make it possible to have more efficient
implementations. Extensions:

* infout parameters
» operators without parameters
» operators without result

Example 24: Operators

operators
opl : in/out Coordinates;
op2 : -> Coordinates;
op3 : ;

In the example above op1 takes onein/out parameter and has no result,
op2 hasno parameters and returns avalue of type coordinates, while
op3 has neither parameters. nor result.

The behavior of operators can either be defined in axioms (as the literal
values) or inoperator diagrams. An operator diagram isamost identical
to avalue returning procedure (without states). An alternative to draw

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using SDL Data Types

July 2003

the operator implementation asadiagramisto defineit in textual form.
Thismight be appropriate as most operators performs calculations, and
does not have anything to do with process control or process communi-
cation. In this case the agorithmic extension described in “* Compound
Statement” on page 138 in chapter 3, Using SDL Extensions could be of
great value.

Example 25: Operator implementations

newtype Coordinates struct
X integer;
y integer;

adding
operators
“4” . Coordinates, Coordinates -> Coordinates;

operator “+” fpar a, b Coordinates
returns Coordinates

dcl result Coordinates;
result!x := alx + blx;
result!y := aly + bly;
return result;

}

endnewtype;

Inthe SDL to C Compilersthereisalso the possibility to includeimple-
mentationsin the target language. The problem with thisisthat it is nec-
essary to know alot more about the way the SDL to C Compilerstrans-
late operatorsinto C.

Default Value

In anewtype or syntypeit is possible to insert adefault clause stating
the default value to be given to all variables of thistype.

Example 26: Default value in struct newtype

newtype Coordinates struct
x integer;
y integer;
default (. 0, 0 .);
endnewtype;

All variables of sort coordinates will be given theinitial value
(. 0, o .),exceptif anexplicit default valueisgiven for the variable
in the variable declaration.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 83

Chapter 2 Data Types

Example 27: Explicit default value in variable declaration

dcl
Cl Coordinates := (. 1, 1 .),
C2 Coordinates;

Here c1 hasan explicit default value that is assigned at start-up. c2 will
have the default value specified in the newtype.

Generators

Itispossiblein SDL to define generators with the same kind of proper-
ties as the pre-defined generators Array, String, Powerset, and Bag. As
thisisadifficult task and the support from the code generatorsis limit-
ed, it is not recommended for a non-specialist to try to define agenera-
tor.

The possibility to use user defined generatorsin the SDL to C Compil-
ersisdescribed in moredetail in“ Generators’ on page 2647 in chapter
57, The Cadvanced/Cbasic SDL to C Compiler, in the User’s Manual.

84 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

Using C/C++ in SDL

July 2003

Introduction

To enable accessto C or C++ declarations from an SDL specification,
trand ation rulesfrom C/C++ to SDL have been devel oped, that specify
how C/C++ constructs may be represented in SDL. These tranglation
rules have been implemented in the SDL suite's CPP2SDL tooal.
CPP2SDL supports the trandation of both C and C++ declarations.

When using CPP2SDL, it is possible to access C/C++ declarations and
definitionsin SDL. Figure 28 shows how CPP2SDL takes a set of
C/C++ header files and, optionally, an import specification as input.
Note that the import specification is only optional when CPP2SDL is
executed from the command line. When using the utility from the Orga-
nizer, animport specification is created with adefault configuration. An
import specification holds CPP2SDL options, and may also specify
which declarations in the header files are to be translated. CPP2SDL
then translates the C/C++ declarationsin the header filesto SDL decla-
rations. These resulting SDL declarations are saved in a generated
SDL/PR file. See “Introduction” on page 758 in chapter 15, The
CPP2SDL Tool, in the User’s Manual for more details.

Import specification

C/C++ header

files

SDL/PR
h el CPP2SDL] 5| o

Figure 28: CPP2SDL input and output.

Workflow

Thetypica workflow involved when using CPP2SDL will beillustrated
with an example based on the AccessControl system. The example can
befoundin

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 85

Chapter 2 Data Types

86

Telelogic\SDL TTCN Suite4.5/sdt/examples/cpp_access.
Please note that the exampl e currently runson Windows only. However,
the principles that are demonstrated are the same on all platforms.

The AccessControl system controls the access to a building. The build-
ing has a user terminal consisting of adisplay, acard reader and a key-
pad. To get access to the building, avalid card hasto be inserted and a
correct 4-digit code has to be typed.

In this version of the AccessControl system, information about cards
and valid codesis stored in an external database. The database will be
accessed through ODBC!, whichis acommonly used C/C++ API for
accessing data from different kinds of databases.

The purpose of the exampleisto show how a C/C++ API can be access-
ed from SDL by means of the tools in the C/C++ Access. The example
covers the most important issues regarding the usage of the C/C++ Ac-
cess, and may serve as a basis for more advanced experiments.

The example described below is a walk-through of how to utilize
CPP2SDL from within the Organizer. The different development phas-
esillustrated are:

* A PR symbol is added to the Central process diagram.

» The PR symbol is refined to be an import specification, by double-
clicking it and setting the document type to C++ Import Specifica-
tion.

» A TRANSLATE Section isadded to theimport specification, in which
we list the names of all C/C++ declarations we need to access.

» Theimport specification isthen saved in afile, and the import spec-
ification symbol is thereby automatically connected to thisfile.

* We usethe CPP2SDL Options dialog to set various options for the
import specification.

* Finaly, we add a header file to be translated.

1.0DBC isadefacto standard on Windows, but it has also beenimple-
mented on other platforms.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

July 2003

Editing

Thefirst stepin accessing aC/C++ APl from SDL istoinsert aPR sym-
bol at the place in the SDL specification where the C/C++ declarations
of the API areto be used. The PR symbol representstheinclusion of an
SDL/PRfile, in genera. In C/C++ Accessthismechanismisused toin-
clude the SDL/PR file that is generated by CPP2SDL.

In the AccessControl example, weinsert a PR symbol named ODBC in
the process Central. The ODBC AP is accessed from this process ex-
clusively, thereby maintaining the narrowest possible scope.

Normally, an import specification should be placed at the highest level
where declarationsimported by the import specification are used. How-
ever, if C/C++ variables are imported, theimport specification must be
placed in a scope where external SDL variables are allowed to be de-
clared.

Note:

External variables cannot be declared at system or block level. They
can only be declared in processes, procedures, services or in opera-
tor diagrams.

PR
oDBC

Figure 29: The PR symbol in the SDL Editor

When a PR symbol has been added inthe SDL Editor it will initialy ap-
pear in the Organizer as an unconnected reference, see Figure 30.

[Drganizer - exercise.sdt =
File Edit \iew Generate Tools HE|D

Central.sbk ;I
Central.spr

Register spd

Check.spd

MainCardExists. spd J
|unconnected) |

|Procedure ManCardExists A

EEEEZ

Figure 30: The unconnected PR symbol in the Organizer

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 87

Chapter 2 Data Types

88

By default, the Organizer assumes that an unconnected PR symbol isto
be connected to an ordinary user-defined SDL/PR file. In this case this
is not what we want. By double-clicking the PR symbol, either in the
SDL Editor or in the Organizer, an edit Document dialog is opened, see
Figure 31 on page 88. If we change the document type from SDL/PR to
C++ Import Specification, we specify that the SDL/PR fileis generated
from a set of C++ header files.

Note:

Ordinary PR symbols are connected to user-defined SDL/PR files,
while import specification symbols are connected to generated
SDL/PR files.

Edit
— Document type

= HEE M5C s
£ 1L [Obecttode]
€ [raaizer lm
1ol ek =]
& Ton (G Inpor Speciee=]
| e e
Document nanme:

¥ Show in editor
™ Copy existing file:

| =]
Ok I Cancel | Help |

Figure 31: Edit the type of the PR symbol to be a C++ Import Specification

Since we want to create a new import specification, we leave the Show
in editor check-box marked. If we already have an import specification
to be used, there are two methods of connecting it. Thefirst approachis
to unmark all check-boxes and use the Connect command in the Orga-
nizer to connect to the existing import specification file. The second ap-
proach isto check the Copy existing file option and either browsefor, or
input the path to, the existing import specification. When using this
method, it is necessary to view the filein the Text Editor, and then save
in order to connect it.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

July 2003

An import specification can be edited manually by means of the Text
Editor. However, an import specification can be left empty, and
CPP2SDL options set from within the Organizer at alater stage. This
will add a section called cpr2spropTIONS Where different options to
CPP2SDL are stored. Often an import specification will contain a
TRANSLATE Section, with alist of the names of all declarationsthat you
wish to be made accessiblein SDL. For moreinformation, refer to “1m-
port Specification” on page 102.

In our case we add a TRANSLATE section with the names of al ODBC
functions and types that we will need to access from SDL. See

Figure 32.

TRANSLATE {

SQLHENV
SQLHDBC
SQLHSTMT
SQLRETURN
SQLCHAR
SQLINTEGER
SQLSMALLINT
SQLPOINTER

SQLAllocHandle
SQLSetEnvAttr
SQLSetConnectAttr
SQLConnect
SQLBindCol
SQLExecDirect
SQLFetch
SQLCloseCursor
SQLFreeHandle
SQLDisconnect
SQLGetDiagRec

unsigned char. [6]
unsigned char. [64]
unsigned char. [256

char. [256]

strcpy
strcat

}
Figure 32 The TRANSLATE section of the ODBC import specification

When the import specification is saved to afile (called opac. is), the
Organizer will automatically connect theimport specification symbol to
that file.

Figure 33 shows the connected import specification symbol.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 89

Chapter 2 Data Types

90

5 Drganizer - exercise.sdt =
File Edit View Gererate Tools Help
2|8l & szt F 52 u st B 218 2]
rer Central sbk =]
Central rey Central.spr
Register v Register.spd
Check rey Check.spd
MainCardExists rw MainCardExists.spd J
QODBC re ODBC.Is =
C++ Impoirt Specification 0DBC v

Figure 33: The connected import specification symbol in the Organizer

The next step isto set appropriate options for the trandation of the
C/C++ declarations that are specified in the import specification. This
isbest done by means of the CPP2SDL Options dialog (see Figure 34).
Thisdialog is opened by right-clicking on theimport specification sym-
bol inthe Organizer. For more detailed i nformation about the CPP2SDL
options, see “ The CPP2SDL Tool” on page 757 in chapter 15, The
CPP2SDL Tool, in the User’s Manual.

CPP2SDL Options i x|

—Inputlanguage

- I” Barland I~ GNU
& Car ¥ Microsoft
™ Bun-ime type information ™ Allow object slicing

[~ Recognize SOL sorts in input

—Preprocessaor
I =

[~ Options |

—Code generation

Pairter ptr_ Array arr Template tol_

Keyword keyword_ Incomplete |complete_ Underscore |uacore

v Generate SDL representations for fundamental types

 Optimizations
[~ Only generate class pointer typas whan necessary ‘

Set Cancel Help |

Figure 34: The CPP2SDL Options Dialog

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

July 2003

The following options may be specified:

Language

The language option specifies the input language, i.e. if C or C++
declarations shall be translated. If C is selected as input language,
CPP2SDL will assume that no C++ specific constructs are encoun-
tered in the input header files.

Notethat this option determinesif the import specificationisaC or
C++ import specification. Refer to Figure 31 on page 88 where we
selected which type of import specification to use.

Dialect

These check-boxes makeit possible to specify what C/C++ dialects
that are to be supported by CPP2SDL. If no check-boxes are
marked, the ANSI C/C++ dialect is supported.

In our example we use the ODBC implementation from the Mi-
crosoft Foundation Classes, so we need support for the Microsoft
dialect.

Run-Time Type Information

If this check-box is set, Run-Time Type Information (RTTI) isas-
sumed and dynamic casting is supported.

Allow Object Slicing

Set this check-box if generated SDL cast operators are to support
dlicing of C++ objects.

Recognize SDL Sorts in Input

When this check-box is set, SDL sorts will be recognized in thein-
put.

Preprocessor

The preprocessor to be used for preprocessing the input can be set
here. If no preprocessor is set, CPP2SDL will use Microsoft Visual
C/C++ Compiler (c1) in Windows and the standard C/C++ Prepro-
cessor (cpp) on UNIX.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 91

Chapter 2 Data Types

92

Note:

It is normally recommended to preprocess the input C/C++ headers
with acompiler rather than aplain preprocessor. Thereason for this
isthat a compiler may set several useful preprocessor defines.

Preprocessor Options
The preprocessor options can be set in thisfield.
» Pointer, Array, Template, Keyword, Incomplete, Underscore

These fields specify the prefixes and suffixes that are used when
C/C++ names must be modified in the SDL translation.

* Generate SDL Representations for Fundamental Types

Set this check-box if SDL representations for fundamental C/C++
types are to be included in the trandlation. These SDL representa-
tions are defined in SDL/PR files, which are described in detail in
“SDL Library for Fundamental C/C++ Types’ on page 841 in chap-
ter 15, The CPP2SDL Tool, in the User’s Manual.

Note:

If the SDL typerepresentation optionisset at several levels, thiswill
cause problems. SDL representations for fundamental types should
only beincluded at the highest level at which the typeswill be used.
For example, if two blocksin a system have import specifications
for accessing C/C++ declarations, SDL representations for funda-
mental C/C++ types should beincluded in the system, and not in the
blocks. This can be done by adding an empty import specification
without input headers at system level, that includes the SDL repre-

sentations for the fundamental C/C++ types.
* Only Generate Class Pointer Types when Necessary

When this check-box is set, CPP2SDL will optimize the generation
of class pointer types.

When appropriate CPP2SDL options have been set for an import spec-
ification, the next step is to add the C/C++ header files that are to be
tranglated. Thisis done by selecting the import specification and, in the
Edit menu, select Add Existing... Added header files will appear under
the import specification symbol in the Organizer, see Figure 335.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

July 2003

7 Drganizer - exercise.sdt

Fle Edt Wiew Generate Tools Help

=\5| & s(Res 3 (5 b S0t 8l 28 2]

H[[MainCardExists rw MainCardExists spd |«
[e+ly oDBC w ODBC.is
inclutes h mw includes h
. —
[P?Y macros o macros pr -
4] | +
Open C:\Utveckling\cpp2sditassiexeicise sdt done 4

Figure 35: Add header files to the import specification

An arbitrary number of header files can be added to an import specifi-
cation. They will all be processed using the optionsthat are specified for
theimport specification. In the AccessControl example only one header
fileisadded (includes.h).

To seethe contents of aheader file double-click onits symbol in the Or-
ganizer. The Text Editor will then open and display the contents of the
header file. If thisisdone on the includes . h header, we see that it ac-
tually includes several other header files. The reason for using awrap-
per header like includes.h instead of adding the interesting headers
under the import specification directly, is that we would like to avoid
hard-coding the path to thesefiles. By using #include <file> State-
ments, and preprocessing the file with the Microsoft Visual C++ com-
piler, the location of these fileswill be known at compile-time.

L et us summarize what we have done in the example so far. We have
edited the SDL system by adding a PR symbol, changed the PR symbol
to an import specification, added a TRaNsLATE listing the needed dec-
larations, saved the import specification connecting it to the system,
configured CPP2SDL using the options dialog, and adding the header
fileto the system.

This concludes the editing phase. It is how time to analyze the system.

Analyzing

The SDL declarations that are generated by CPP2SDL must be ana-
lyzed as case-sensitive SDL. Before starting the Analyzer, a case-sensi-
tivity option must therefore be set:

» Select Tools in the Organizer and start the Preference Manager.

* Inthe Preference Manager, double-click on the SDT symbol and
set CaseSensitive 10 on (it is by default set to off).

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 93

Chapter 2 Data Types

i Preference Manager [_ O] x]
File Edit Wiew Tool: Help

He=282]

=
off (off) Allow spaces in file names
on (off) Case sensitive mode for the SDL language
0 Default drive table file

=

-

ppppp frvnme et LI anlud Camesnnd mned tombar the EM:'J
»

|SDT CaseSensitive A

Figure 36: Set case-sensitive SDL in the Preference Manager

The Analyzer will perform three major steps during the analysis of an
SDL system that contains C/C++ import specifications. During each
step amessage will be printed in the Organizer L og window to indicate
the progress, see Figure 37.

Organizer Log
File Edit Toolz Help

B &%= ?|

Conwversion of 3DL to FE started 55&'5‘/? fa SEUPR __f_!
LOrversion

Parzing C/C++ input...
Translating C/C4++ to SDL...

Lo r fo SO Conversron

Generating 3DL...
0 errors and 0 warnings.

Conversion to PR completed o o
Syntactic analysis started .S‘ﬂviacﬁcand.ﬁ‘emanﬁc

Syntactic analysis cowpleted SO An&%ﬁ'
Semantic analysis started
Semantic analysis completed

+ Analysiz completed

1| | »
i 4

Figure 37: The Organizer Log window for the analyze phase

94 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

1. SDL/GR to SDL/PR Conversion

The Analyzer requests the SDL Editor to perform an SDL/GR to
SDL/PR conversion. Thismeansthat al graphical SDL symbolsare
converted to their textual representations. In particular, every PR
symbol will berepresented by a#include ’'filename.pr’ inthe
SDL/PR, where filename.pr isthe name of thefile to which the
corresponding import specification is connected.

In our example we will thusget a#include ‘0ODBC.pr’ inthe
SDL/PR representation of the process Central.

2. C/C++ to SDL Conversion

Thisstep is performed once for each import specification in the sys-
tem. The header files associated with an import specification are
parsed and analyzed by CPP2SDL. Errors that are reported during
this phase may, for example, be due to differencesin language sup-
port and inappropriate preprocessor settings. If so, you can set the
correct language dialect and suitable preprocessor optionsin the
CPP2SDL Options dialog. Syntax errors and some semantic errors
in the header files will also be checked for during this phase. For
more information about how CPP2SDL handles errors, see * Exam-
ple usage of some C/C++ functionality” on page 846 in chapter 15,
The CPP2SDL Toodl, in the User's Manual.

If no errorsare found, CPP2SDL will generate an SDL/PR file with
the result of thetrandlation. Finally, some warnings may be printed,
for exampleto notify that certain declarationsfor somereason could
not be translated.

In our example we get afile called obec. pr when this step isfin-
ished.
Note:

CPP2SDL is not as good as a C/C++ compiler when it comesto er-
ror detection and error reports. It is thus strongly recommended to
make sure that the header files are semantically correct by running
them through a compiler, before they are translated to SDL.

3. Syntactic and Semantic SDL Analysis

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 95

Chapter 2 Data Types

96

When all SDL/PR code has been generated the SDL Analyzer will
check for syntactic and semantic errors as usual. For example, it is
likely that many errors will be reported if case-sensitive SDL was

not set in the Preference Manager, see Figure 36. A common source
for errorsisthat SDL representations for fundamental types were;

not included at all, included at the wrong place in the SDL system,
or included many times in the same SDL scope entity.

Once we have got a clean analysis of the system, it is time to proceed
with code generation.

Generating

Code generation can be done either from the traditional Make dialog, or
from the more powerful tool SDL Targeting Expert. TO generate code

for a system containing C or C++ import specifications, it is preferred

to usethe Targeting Expert. For example, itismuch easier to link-inthe
object filesthat belong to thetrans ated header files, using the Targeting
Expert. The Makedialog will in the near future be discontinued in favor
of the Targeting Expert.

A system that contains one or more C++ import specifications must be
trandlated to C++ rather than C code. An option to the Code Generator
controls whether C or C++ code is generated. This option is automati-

cally set by the Analyzer if there are one or more C++ import specifica-
tions present in the Organizer view.

To start the Targeting Expert, select Targeting Expert... inthe Generate
menu in the Organizer. The Targeting Expert dialog will appear, see
Figure 38. For full information about all the settings and options provid-
ed by Targeting Expert, see chapter 60, The Targeting Expert, in the Us-
er’s Manual.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

July 2003

|SDL Targeting Expert - h-\exanpleth2sdl-cpp2sdivcpp_accesshenercise. sdt

Ele Edit Selfings Make Took Help

[e |l = j“ 0o BN E
| Partiioning Diagram Model
0 Acces:Contiol -]

1 3

I Commands EJ ‘Wwarmings: 0 Enors: 01 =

Selected conponent is *AccessControl-node-component” =
cte: The SDL system uses C++ constructs, a G+ compiler is nesded

‘<I [

Figure 38: The SDL Targeting Expert

When one or more C++ import specifications are present in the SDL
system, the Targeting Expert will issue awarning that a C++ compiler
is needed to compile the generated code (see Figure 38). Next, right-
click Component, select Simulations, and then Simulation. The compil-
er may be set by pressing the Compiler/Linker/Make icon, and then, un-
der the Compiler tab, |ocating the compiler executable. Here we may
also specify compiler options and preprocessor settings.

Note:

Make sure that the settings made in the CPP2SDL Options dialog
for the preprocessor and preprocessor settings match the settings
made in the Targeting Expert.

In the AccessControl example, you can use the C++ Microsoft Simula-

tion kernel, and the generated code can be compiled with the Microsoft
Visua C++ compiler.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 97

Chapter 2 Data Types

To avoid getting loads of link errors, we also have to remember to link-
inseveral required Microsoft libraries (e.g. the Odbc32.liblibrary). This
isdone under the Linker tab as shown in Figure 39. Simply add thefile
to theList of files and save.

#5DL Targeting Expert - h-\exanpleth2sdl-cpp2sdiicpp_access\exercise. st
i Edt Setings Make ool Heb

W maEs w0 e

[simuiation = “Eadvanced =l IIM\cmsnﬂ—[Ei+ fossible] 7| “ Simulation uis ot B e
[Partitioning Diagram Model Compler | Compiler Flag | Addiional Compiler Linker | Make |
0 AccessControl * =
9 node ~Linker Description o
] camponent The linker's optians should cany the placeholders
M Simulation %0 - list of object fles
L Copiln Linlcor Ml d L - ligt of libranies if there are libraries
B TargelLibrary %e - enccutable fie

Linket nane: [131c B| Defaut
Optians nologo —subsysten:console =] Default
—ignore: 4083 XL %0 ~OUT:%e
|
Exe. oot (oo oz ault

r~dditonal object files ko link:
List of objects

Elilile [|E [E[E

List of ibraries: [netapiiz. Lib

£
=

Remave
Cle=t
Default
0| 1 HJ Hsare ¥ Cancel % Help |
Cormirance| EJ Warrings: 0 Enoe: 0 =
‘ 4

Figure 39: Add libraries in the Targeting Expert

Now everything is ready for code generation. Press the Make or Full
Make buttons and the Targeting Expert will instruct the Analyzer to an-
alyzethe SDL system (see“Analyzing” on page 93) and then invokethe
C or C++ Code Generator. Finally the generated code will be compiled
and linked as specified to create a simulator executable. Figure 40
shows what the Targeting Expert may look like when this has been
done.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

July 2003

Fle Miew Buttons Log General Ewecute Esamine Change Show Trace Breakpoint Help
25| 2]
¥ Execute Group = =
Symbaal | Go | Break | le lcome to the SDL SIMULATOR. Simulating system Acc
Transition Until Timer Command @ |
¥ Send Signal Group
Send To | Send Via | Send None |
¥ Examine Group
ProcessList | varianle | varin Scope |
¥ Trace Group
Msc | so. | mea |
« _>I_I
~|[Command: |
i
TE [I i
0 » I e ke =erMake | Frros | 7 Help
Commands| =] Warings 1 Ernors: 0 _|=
— Compile and link completed =l
Starting SDL Simulator
«| | _"j

Figure 40: Generating a simulator from the 1argeting Expert

Simulating

Naturally, it is possible to simulate and debug a system on SDL level
even if it uses C or C++ declarations. The standard SDL simulator can
be used for this.

A simulator will automatically start when making from Targeting Ex-

pert. At other timesthan making to start asimulation of asystem, select
SDL inthe Tools menuinthe Organizer or inthe Targeting Expert. Then
select Simulator Ul and the SDL Simulator user interface will start. To
load the simulator executabl e that was generated above, select File and
Open... inthe SDL Simulator Ul.

For the AccessControl example, two customized buttons are available
for the Simulator Ul. They may be loaded by selecting Buttons and then
Load...The" GUI” button startsaGUI for the AccessControl system and
waitsfor you to single-step or go through the system by interacting with
the GUI. The “GUI+MSC” button also activates the GUI, and in addi-

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 99

Chapter 2 Data Types

100

tion generates an M SC trace. In Figure 41 an example of an MSC trace
of the AccessControl system is shown.

EF MSC Editor - SimulatorTrace/1 =

Fle Edt View Pages Diagiams Window Tools Help
2| | a|s| = s =l ol®] 2
s I o B e
[e] [(central1_1 | CodeReader 1 2] [Contraler 13 | [Display_1 4 | [Doors 15 |
@
@
pCALL ManCardExists | (4)
(false)
PREPLY MainCafdExists
(true)
PCALL_Display
(insert card)
Dispiay
(Insert card)
REPLY_Display
1« | ;I_I
A

Figure 41: MSC trace of the AccessControl system

The Simulator will treat C++ classes as C structs, but with the additional
possibility of invoking the constructors of the class. For example, when
thevalueof aC++ class, that isinstantiated in SDL, is changed from the
Simulator, the following steps are performed:

The Simulator pops up adialog showing alist of available construc-
tors. For example;

0 /* No constructor */

1 /% Cc() */

or, for aclass with a user-defined constructor,
0 /* No constructor */

2 /* C(int) */

Type the number for the constructor that are to be invoked, if any.

If aconstructor was sel ected, the Simulator will prompt for itsactual
arguments.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

* Finally, the Simulator alows public member variablesto be explic-
itly set using either the SDL or ASN.1 syntax. For example:

(. 1, true, 'x’' .) SDL syntax

{mvi 1, mv2 true, mv3 ’x’} ASN.1 syntax

Note that the ASN.1 syntax is more flexible since it contains the
names of the member variables.

The stepsfor instantiating a C++ class from the Simulator (e.g. by send-
ing asignal containing aparameter of classtype) are similar to the ones
shown above.

Summary of the AccessControl Example

The walk-through of the AccessControl example above has shown the
typical workflow when using the C/C++ Access.

* The SDL specification is edited by adding PR symbolsto it, and
they are refined to become import specifications. C/C++ header
files are added under each import specification, and appropriate
tranglation options are set by means of the CPP2SDL Options dia-
log. A TRANSLATE Section may also be added to the import specifi-
cation listing the names of the declarations to be translated.

* TheSDL specificationisanalyzed as case-sensitive SDL. Errorsin
the C/C++ headers or in the SDL specification are detected by
CPP2SDL or the SDL Anayzer respectively.

e Cor C++ codeis generated by using the Make dialog or, prefera-
bly, the Targeting Expert. The generated code is compiled and
linked together with additional object files.

* The SDL specification may be simulated using the Simulator Ul.

Figure 42 below shows the Organizer view of how the AccessControl
system may look like when it is completed.

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 101

Chapter 2 Data Types

102

DT e ChUtvecklingicpp2sdi-taexiexercise.sdt

e ChUtvecklingicpp2sdl-taex,
— sOL Systemns
= s

[] AccessControl AccessControl.ssy
Local sbk
CodeReader.spr
ReadCode spd
SelectDoor.spd
Controller.spr
Doors spr
Display.spr
Flashiessage spd
Display.spd
Central sbk
Central.spr
Register.spd
Check.spd
MainCardExists spd
QDBC.is

incluces h

macros pr

CodeReader
] ReadCode
(] SelectDoor
Cantroller

Dioors

Display

[FlashMessage

N
o
2222222222222

Open C\tvecklingvepp2ed taerenercise sdt done)

Figure 42: Organizer view of the AccessControl system

Ascan beseeninthefigure, the Central process hasone PR symbol that
has not been refined into an import specification. Instead this symbol is
connectedto an ordinary SDL/PR file, macro . pr, that containsexternal
SDL synonymsthat represent C/C++ macrosthat are needed inthecalls
to the ODBC API. The sorts of these synonyms are imported by the
ODBC.is import specification. An alternative techniquefor accessing
C/C++ macros, based on the#copk operator, isdescribed in“ Accessing
CIC++ Macros from SDL” on page 103.

Import Specification

The import specification is atext file written in asimple C/C++ style
syntax. Y ou can specify exactly which declarationsin the input header
filesto access, by using animport specification. The specified subset of
the declarations is translated by CPP2SDL. The import specification
also enables accessto e.g. class and function templates. For moreinfor-
mation about import specifications, see” Import Specifications’” on page
771 in chapter 15, The CPP2SDL Tool, in the User’s Manual.

The example below shows a simple import specification where the
identifiersa_int, i_arr and func are made availablein SDL.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

July 2003

Example 28: A simple import specification

TRANSLATE {
a_int
i arr
func

If an identifier in an import specification refersto a declaration that de-
pends on other declarations, CPP2SDL will translate all these declara-
tionsaswell.

There are some more advanced constructs that can be used in an import
specification:

e Type Declarators
» Prototypesfor Ellipsis Functions

For more information about these constructs, see “ Advanced | mport
Specifications’” on page 773 in chapter 15, The CPP2SDL Tool, in the
User’s Manual.

Templates
By using the CPP2SDL tool, instantiations of template declarations are
supported.

To be ableto instantiate a C++ template, CPP2SDL needs information
about its actual template arguments. Thisinformation isgiveninanim-
port specification.

The C++ template declaration is not itself translated to SDL. Instead an
instantiation of the template is mapped to SDL.

Accessing C/C++ Constructs not Fully
Supported by CPP2SDL

Accessing C/C++ Macros from SDL

Macros are used for conditional compilation, but can also be used for
other purposes:

* Todefine constants: #define PI 3.1415

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 103

Chapter 2 Data Types

* Todefinetypes: #define BYTE char
¢ Todefinefunctions. #define max(a,b) asb?a:b

Macros are not part of the C or C++ languages and are therefore not
translated to SDL. Instead, the preprocessor expands all macros before
CPP2SDL perform the trandlation.

To be able to access macro constants from SDL, the implicit #copE op-
erator or SYNONY M can be used, see example below.

Example 29: Constants defined as C++ macros

C++:

#define PI 3.1415;

SDL using #CODE:
dcl a double;
task a := #CODE ('PI’);
SDL using SYNONYM:
SYNONYM PI double = EXTERNAL ’'C++’;
dcl a double;

task a := PI;

To be ableto access macro definitionsfor types or functions, the macro
_ cpr2spL_ canbeused. The cpp2spr,. macroisdefined when
CPP2SDL executes, but not otherwise, and is used in a special header

file (called x. n in the examples below). This header file must then be

included in the set of header filesthat are translated by CPP2SDL .

Thefollowing examplesillustratehow the cpp2spr. macrocanbe
exploited to change C/C++ headersto make macro definitionsfor types
and functions availablein SDL.

104 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

July 2003

Example 30: Macro “types” in C++ headers

#define BYTE char

In the C++ fragment above, the macro BYTE isused asif it were atype.
The preprocessor will resolveall ByTE occurrences, which result in that
BYTE cannot be availablein SDL. To avoid this, the definition of BYTE
can be changed to the following:

x.h:

#ifndef _ CPP2SDL___
#ifdef BYTE

#undef BYTE

#endif

#define BYTE char
#else

typedef char BYTE;
#endif

ThemacrosyTE isnow availableasatypeinSDL,since cpp2spL
will be defined during the C++ to SDL tranglation. In the generated C++
code, BYTE isamacro, since __cpp2spL__ will be undefined.

Example 31: Macro “functions” in C++ headers

#idefine max(a,b) a>b?a:b
By defining max asamacro, max canbe used asif it were afunction.
The macro max can be used for any type for which > is defined. The
following definition makes max available in SDL for char and int.

x.h:

#ifndef _ CPP2SDL__
#ifdef max

#undef max

#endif

#idefine max(a,b) a>b?a:b
#else

int max(int a,int b);
char max(char a, char b);
#endif

With the above definition, max will be regarded as an operator by the
SDL system, since __cpp2spL__ has been defined. When the C++
code generated from SDL is compiled, the C++ preprocessor will re-
solve the “function calls’ to max, sincethemacro _ cpp2spr, then
will be undefined.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 105

Chapter 2 Data Types

Function Pointers

Function pointers are mapped to untyped pointersin SDL,
ptr_void(void+). Thisalows function pointersto be represented in
SDL. However, it is not possible to work with this SDL representation.
For example to call afunction that the pointer points at or to assign the
function pointer with the address of an SDL operator, you haveto do as
shown in the following example:

Example 32: Using function pointers
C++:

int funcl(int i, int j);
int con_sum(int a, int b, int (*F) (int,int));

Import Specification:

TRANSLATE {

funcl
con_sum
SDL:
NEWTYPE global namespace /*#NOTYPE*/
OPERATORS
con_sum : int, int, ptr void -> int;
funcl : int, int -> int;

ENDNEWTYPE global namespace; EXTERNAL ’'C++’;

SDL using #CODE alternative 1:

dcl
sum int,
pfunc ptr void;

task {

pfunc := #CODE (' (void*) &funcl’);

sum := con_sum(1l,4,#CODE (' (int (*) (int,int))
#}t(pfurw) "))

SDL using #CODE alternative 2

dcl
sum int;

task {
sum := con_sum(l,4,#CODE (’'&funcl’)) ;

106 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using C/C++in SDL

July 2003

Unsupported Overloaded Operators

In both C++ and SDL, thereis a possibility to override predefined op-
erators. In the table below, the overloaded C++ operators that
CPP2SDL supports are listed.

C++ operator Description SDL operator
+ (binary) Addition +

- (binary) Subtraction -

* (binary) Multiplication *

* (unary prefix) Dereference | *>
/ (binary) Division /

% (binary) Modulo rem
! (unary prefix) Not not
< (binary) Less <

> (binary) Greater >
<< (binary) Left Shift <
>> (binary) Right Shift >
== (binary) Equal =
1= (binary) Not Equal /=
<= (binary) Less Equal <=
>= (binary) Gresater Equal >=
&& (binary) And and
|| (binary) Or or

Both shift operators and theless/greater operatorsin C++ are mapped to
<and>in SDL. Thismapping impliesthat overloading is supported on
either < and > or << and >> in SDL. If both these operator pairs are

Telelogic Tau 4.5 SDL Suite Methodology Guidelines

107

Chapter 2 Data Types

overloaded, CPP2SDL will issue awarning, and select the former pair
to be represented in SDL.

Overloaded operators, that are not supported by CPP2SDL, can be han-
dled using the operator #copE.

108 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

C Specific Package ctypes

C Specific Package ctypes

Telelogic offers a specia package ctypes that contains data types and
generatorsthat match C. It isdescribed in detail in chapter 63, The ADT
Library, in the User’s Manual. The ctypes package should be used in
the following cases:

» if you want to use pointersin SDL

« if you need a data type that matches some specific C type (for ex-
ample short int) for which there is no corresponding SDL sort.

» if you use C headersdirectly in SDL In this case package ctypes
must be used.

Thetables below list the data types and generatorsin ctypes and their
C counterparts.

SDL Sort Corresponding C Type
ShortInt short int

LongInt long int
UnsignedShortInt unsigned short int
UnsignedInt unsigned int
UnsignedLongInt unsigned long int
Float float

Charstar char *

Voidstar void *

Voidstarstar void **

SDL Generator Corresponding C Declarator
Carray C array, i.e. []
Ref C pointer, i.e. *

Therest of this section explains how these datatypes and generators can
be used in SDL.

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 109

Chapter 2 Data Types

110

Different Int Types and Float

ShortInt, LongInt, UnsignedShortInt, UnsignedInt,
UnsignedLongInt are al defined as syntypes of Integer, so from an
SDL point of view, these datatypes arereally the same, and the normal
Integer operators can be used on these types. The only differenceisthat
the code that is generated for these typesis different. Float is defined
as asyntype of Real.

Charstar, Voidstar, Voidstarstar

Charstar representscharacter strings(i.e. char *)inC. Charstar isnot
the same as the SDL predefined type Charstring! Charstar is useful
when accessing C functions and data types that use char *. In other
casesit isbetter to use Charstring instead (see also “ Charstring” on page
50). Conversion operators between Charstar and Charstring are avail-
able (see below).

Voidstar correspondsto void * in C. Thistype should only be used
when accessing C functionsthat have void * parameters, or that return
void * (inwhich caseit isadvised to “cast” theresult directly to anoth-

er type).
Voidstarstar correspondstovoid *+in C. Thistypeisused in com-

bination with the Free procedure described in “Using Pointersin SDL”
on page 113. Inrare casesthistypeis also needed to access C functions.

The following conversion operatorsin ctypes are useful:

cstar2cstring : Charstar -> CharString;
cstring2cstar : CharString -> Charstar;
cstar2vstar : Charstar -> Voidstar;
vstar2cstar : Voidstar -> Charstar;

cstar2vstarstar : Charstar -> Voidstarstar;
These operators have the following behavior:

® cstar2cstring:
ConvertsaC string to an SDL Charstring. For exampleif variablev
of type Charstar contains the C string *hello world”, then
cstar2cstring(v) = "hello world’.

® cstring2cstar:
Convertsan SDL Charstring to a C string, i.e. the opposite of

cstar2cstring.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

C Specific Package ctypes

July 2003

® cstar2vstar.
ConvertsaCharstar toaV oidstar. Thisoperator is sometimes useful
when calling C functions with void * parameters.

® wvgstar2cstar:
ConvertsaVoidstar to a Charstar. This operator can for example be
usedif aCfunctionreturnsvoid *, but theresult should be* casted”
toachar *.

The Carray Generator

The generator carray in package ctypes isuseful to define arraysthat
have the same properties as C arrays. Carray takestwo generator param-
eters; an integer value and a component sort.

Example 33: Carray instantiation

newtype IntArr Carray (10, Integer)
endnewtype;

The defined type 1ntarr isan array of 10 integerswith indices0to 9,
corresponding to the C type

typedef int IntArr[10];

Two operators are available on instantiations of Carray; modify! to
change one element of the array, and extract! to get the value of one el-
ement in the array. These operators are used in the same way asin nor-
mal SDL arrays, see “Array” on page 72. Thereisno (.) notation
provided for denoting values of whole CArrays.

modify! : Carray, Integer, Itemsort -> Carray;
extract! : Carray, Integer -> Itemsort;

Example 34: Use of Carray in SDL
DCL v IntArr, i1 Integer;

TASK v(0) := 3; /* modifies one element */
TASK 1 := v(9); /* extracts one element */

If aC array isused as parameter of an operator, it will be passed by ad-
dress, just asin C. Thismakesit possibleto write operators that change
the contents of the actual parameters. In standard SDL thiswould not be
possible.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 111

Chapter 2 Data Types

112

The Ref Generator

The generator ref in package ctypes is used to define pointer types.
The following example illustrates how to use this generator.

Example 35: Defining a pointer type

newtype ptr Ref (Integer)
endnewtype;

The sort ptr isapointer to Integer.

Standard SDL has no pointer types. Pointers have propertiesthat cannot
be defined in normal SDL. Therefore they should be used very careful-
ly. Before explaining how to use the Ref generator, it is worthwhile to
list some of the dangers of using pointersin SDL.

Pointers Will Lead to Data Inconsistency

If more than one process can read/write to the same memory location by
means of pointers, datainconsistency can and will occur! Some exam-
ples:

* Inaflight reservation system thereis one seat |eft, and two reserva-
tion requests comein simultaneously. If pointerswere used to check
the availability of seats, both requests might be approved! In litera-
ture thisis called the “writers-writers problem”.

* A process may update some array variable. If at the same time an-
other process tries to read the variable by means of a pointer to the
array, the reading process may get a value were some el ements of
the array are “new” while other elementsare“old”, and the total re-
sult makes no sense. Thisisthe classic “readers/writers problem”.

Even though tools such as the Simulator and Validator will be able to
detect a number of errors regarding pointers, there are situations that
cannot be detected with these tools! Thisis because the Validator and
Simulator assume a scheduling atomicity of at best one SDL symbol at
atime. Thismay not hold in target operating systems where one process
can beinterrupted at any time (pre-emptive scheduling). If pointersare
used, datais totally unprotected, and data inconsistency may occur,
even though the Validator did not discover any problems! All these
problems can be avoided by using SDL constructs for accessing data,
like remote procedures and signal exchange.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

C Specific Package ctypes

July 2003

Caution!

For the above stated reasons, never pass pointersto another pro-
cess! Not in an output, not in aremote procedurecall, not in acreate,
and not by exported/revealed variabl es!

Andif you do not obey thisrule anyway: after passing apointer, rel ease
immediately the “old” pointer to prevent having several pointersto the
same data area. For example (for some pointer p):

OUTPUT Sig(p) TO ...;
TASK p := Null;

Pointers Are Unpredictable

If you have an SDL system that alwaysworks except during demonstra-
tions, then you have used pointers! Bugswith pointersmay bevery hard
to discover, as a system may (accidentally) behave correctly for along
time, but then suddenly strange things may happen. Finding such bugs
may take very long time; in rare cases you might not find them at all!

Caution!
Bugs caused by pointers may be hard to find!

Pointers Do Not Work in Real Distributed Systems

If an SDL systemis“really” distributed, i.e. where processes have their
own memory space, it makes no sense to send a pointer to another pro-
cess, as the receiving process will not be able to do anything with it.
Therefore, by communicating pointers to other processes, limitations
are posed on the architecture of the target implementation.

Pointers Are Not Portable

The Ref generator and its operators are completely Telel ogic-specific.
It ishighly unlikely that SDL systems using pointers will run on other
SDL tools.

Using Pointers in SDL

If you still want to use pointersin SDL after all these warnings, this sec-
tion explainshow to do this. A pointer type created by the Ref generator

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 113

Chapter 2 Data Types

114

awayshasaliteral valuenu11 (correspondstonurL in C), whichisalso
the default value. Theliteral a11o0c isused for the dynamic creation of
new memory. Examples are given later.

Note:

Itisup to the user to keep track of all dynamically allocated data ar-
eas and to free them when they are no longer needed.

The following operators are available for Ref types:

Wk S : Ref, Itemsort -> Ref;
Wk 0 : Ref -> Itemsort;

“&” : Itemsort -> Ref;
make! : Itemsort -> Ref;

free : in/out Ref;

w7 : Ref, Integer -> Ref;

w_n : Ref, Integer -> Ref;
vstar2ref : Voidstar -> Ref;
ref2vstar : Ref -> Voidstar;
ref2vstarstar : Ref -> Voidstarstar;

Furthermore, the following procedure is defined:

procedure Free; fpar p Voidstarstar; external;

These operators can be used in the following way:

» > (postfix operator):
Gets/changes the contents of apointer. Thisisapostfix operator, so
p*> returnsthe contents of pointer p. In SDL terminology thisisthe
extract and modify operators for pointers.

» & (prefix operator):
Address-operator. Thisisaprefix operator, so svar returns a point-
er to variable var.

* make!Or (. .)
Thisconstructor allocates new memory and assignsthe parameter to
make to the newly allocated memory.

e free
This operator takes a pointer variable, frees the memory it refersto
and sets the pointer variable to Null.

* 4+, -
used to add/subtract an offset to/from an address. This can be useful
to access arraysin C. These operators are defined asin C, e.g. if p

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

C Specific Package ctypes

July 2003

isapointer to some struct, then p+1 pointsto the next struct (not to
byte p+1).

* vstar2ref.
Converts Voidstar to another pointer type. Should only be used to
“cast” the result of C functionsthat return avoid .

* ref2vstar
Converts apointer to Voidstar. Thisis useful when caling C func-
tionsthat havevoid * parameters.

* ref2vstarstar
Returns the address of the pointer asavoid **. Thisoperator is
needed when calling the Free procedure.

* Procedure Free: (NOTE: use free operator above instead)
This procedure is used to release memory that has previously been
allocated with a11oc. Thisprocedureisonly provided for backward
compatibility, use the free operator described above instead.

Example 36: Use of the Ref operators

NEWTYPE ptr Ref (Integer)
ENDNEWTYPE;

DCL p ptr,
i, j Integer;

TASK p := alloc; /* creates dynamically a new
integer; p points at it */
/* here it should be checked that p != Null */

TASK p*> := 10; /* changes contents of p */

CALL free(p); /* releases the integer */

TASK p := (. 10 .); /* allocate and set to 10 */

CALL free(p); /* releases the integer again */

TASK p := &i; /* p now points to i */

TASK p*> := 5; /* changes contents of p, i.e. also
i is changed! */

TASK j := p*>; /* gets contents of p (=5) */

Using Linked Structures with Pointers

Pointers are useful when defining linked structureslikelists or trees. In
this section we give an example of alinked list containing integer val-
ues. Figure 43 shows an SDL fragment with data type definitions for a
linked list, and part of atransition that actually buildsalinked list. A list

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 115

Chapter 2 Data Types

isrepresented by a pointer to an 1tem. Every 1tem contains a pointer
next tothenextiteminthelist. Inthelast item of thelist, next = Null.

idynamic newtypelitem struct
help := Alloc t--1memory element Integer;
1allocation next ltemPointer;
temmmmmm e endnewtype;
newtype ItemPointer
Ref (item)
endnewtype;
true
lassign value to the
"':contents of help
- DCL
| =
alelement := 1 a ltem AN

! = " ! .
alnext := help list, help ItemPointer;

list:= &a

Figure 43: Building a linked list

Figure 44 shows an SDL fragment where the sum of al elementsin a
list is computed. Note that this computation would never stop if there
would be an element that points back in the list, just to illustrate how
easy it isto make errors with pointers.

i =i DCL
|tersellltr?1r = (I;!St' iterator ItemPointer)
) sum Integer;

| sum :=sum
+ iferator*>lelement

| iterator :=
iterator*>Inext|

I

Figure 44: Going through the list

116 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using ASN.1in SDL

Using ASN.1in SDL

ASN.1isalanguage for defining data types that is frequently used in
the specification and implementation of telecommunication systems.
ASN.1isdefined in ITU-T Recommendations X.680-X.683. Recom-
mendation Z.105 defines how ASN.1 can be used together with SDL. A
subset of Z.105 isimplemented in the SDL suite.

This chapter explains how ASN.1 data types can be used in SDL sys
tems. The following items will be discussed:

* How to organize ASN.1 modulesin the SDL suite
 Howtouse ASN.1 datatypesin SDL
* How to share ASN.1 data between SDL and TTCN

Organizing ASN.1 Modules in the SDL Suite

It is recommended to have aspecial chapter for ASN.1 modules (for ex-
ample called ASN.1 Modules). If many ASN.1 modules are used, they
may be grouped into Organizer modules (which is not the same as
ASN.1 modules!), see“Module” on page 42 in chapter 2, The Organiz-
er, in the User’s Manual.

Figure 45 showsan example of the Organizer look of achapter with two
Organizer modules containing ASN.1 modules.

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 117

Chapter 2

Data Types

Wewill show with an example how to usean ASN.1 modulein an SDL
system. Suppose we have an ASN.1 module MmyModule in file

SDT Organizer

ASN.1 Modules

TransactienCapabilities
m TCAPMessages

DirectoryServica
las®) InformationFramework
T attributeTypes

DirectoryceessProtocol

SDL System Structure

Figure 45: Example of ASN.1 modules in the Organizer

mymodule.asn.:

Thismodule contains one type definition, color, that hasthree values,

MyModule DEFINITIONS ::=
BEGIN

Color ::=

END

red, yellow, and blue.

Wefirst add a new diagram of type Text ASN.1 to the Organizer using
Edit/Add New (without showing it inthe Editor) and we connect it to the
filemymodule.asn (using Edit/Connect). In order to use the ASN.1
modulein SDL, we edit the system diagram and add use MyModule;
in the package reference clause, asisillustrated in Figure 46 below.

118

Teldlogic Tau 4.5 SDL Suite Methodology Guidelines

ENUMERATED { red(0), yellow(l), blue(2)

Using ASN.1in SDL

use MyModul%

System MySDLSys

Figure 46: Using an ASN.1 Modulein SDL

Figure 47 shows the resulting Organizer view. The symbol below the
MySDL Sys system symbol is adependency link that indicates that the
SDL system depends on an external ASN.1 module. Dependency links
for ASN.1 modulesthat are used by an SDL system were previously re-
quired by the Analyzer, but now only serve ascomments and are option-
al.

SDT Organizer - colors.s

+
[

ASN.1 Modules

MyMeadule mymedule.asn

SDL System Structure

MySDLSys mysdlsys.ssy

myblock.sbk

Iy Proc.spr

Figure 47: Organizer View of SDL System Using ASN.1 Module

If ASN.1 modulesuse other ASN.1 modul es, dependency links between
the ASN.1 modules should be created.

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 119

Chapter 2 Data Types

Using ASN.1 Types in SDL
After the above preparations, the datatypesin MyModule can beusedin

SDL. Asan example, wewill make an SDL system that convertsa char-
acter string to the corresponding color. Thisis done by two signals:

* Signa cetcolor has ASN.1 type IA5String as a parameter.

* Whenthissignal issent to the SDL system, the SDL system will re-
ply with signa Returncolor, that hasa BOOLEAN parameter in-
dicating whether thereis a color that matches the string, and a
Color parameter.

The system diagram including these signal definitionsis shown in
Figure 48 below.

use MyModul%

System MySDLSys 1(1)

1 n SIGNAL
H H GetColor (IA5String),
1 1 ReturnColor (Boolean, Color);

Colorinterface
MyBlock

[ReturnCoIor] [GetCoIor]

Figure 48: DL system diagram
The MSC below illustrates how the system is intended to be used.

120 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using ASN.1in SDL

MSC GetColor

1
1
' ' [env | MySDLSys

GetColor

[’blue’]

ReturnColor

TRUE, blue]
GetColor

[’non-existing color’
ReturnColor

[FALSE,]

Figure 49: MSC illustrating GetColor

In order to know which values and which operators can be used on
ASN.1 types, it is necessary to look in “Trandation of ASN.1to SDL”
on page 700 in chapter 14, The ASN.1 Utilities, in the User’s Manual.

For example, color isdefined as an ENUMERATED type. By looking at
the mapping rules in “ Enumerated Types’ on page 712 in chapter 14,
The ASN.1 Utilities, in the User’s Manual, we see the list of operators
that can beused on color. Theseareinthiscasenum, <, <=, >, >=, pred,
succ, first, last, and also = and /=, which are always available.

July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines 121

Chapter 2 Data Types

122

Process MyProc

/* array to map color to

newtype ColorToString
Array (Color, IA5String)
endnewtype;

DCL
¢ Color,
name ColorToString,
found BOOLEAN,

str IA5String;

GetColor
(str) '“"‘Ihas the given name

¢ := first(red) f--

k

* |A5String */ —{name

name(red) :=
eIIow) = yellow
name(blue) :=blue’

ic will become the

‘:first element

K

found :=
name(c) = str

,
true @

ReturnColo

d result
(found, ¢ -.1sen
TO Senc?er :Lback

false
- \try next
¢ = Succ(C) t-cdlor

Figure 50: Using the Color typein SDL

Figure 50 shows a fragment of an SDL process that uses color. It con-
tainsaloop over al valuesof color, and illustrates how to declare vari-
ablesof color, how to use color in new SDL sort definitions, and how
to use the operators first, last, and succ. Some notes on the frag-

ment:

* ThetypecolorTostringisusedtoconvertacolortoanlA5String.
In the fragment we do actually the opposite. An aternative solution
would betohaveastringToColor Array (IA5String, Color)
because then no loop would have been needed (seealso “Array” o
page 72). However, the purpose of theexamplewastoillustrate how

to loop through all elements.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines

Using ASN.1in SDL

July 2003

* Operator first inc := first (red) returnsthe element with the
lowest associated number. This ensures that we really get all ele-
ments when using the succ operator. In this case we could just as
well have written ¢ := red.

* Note aso the use of the predefined ASN.1 type 1a55tring, which
isin fact a syntype of the predefined SDL sort charstring.

Using Predefined ASN.1 Types in SDL

The predefined simple ASN.1 types can be used directly in SDL. In
most cases, the ASN. 1 type has the same namein SDL, for example
ASN.1'stypeNumericString isalso called NumericString in SDL.
However, some predefined ASN.1 types contain white-space, likes1T
STRING. In SDL, the white-spaceis replaced with an underscore, so the
corresponding SDL sortiscaled BIT STRING.

The operators on these predefined ASN.1 types are described in detail
in section “Using SDL Data Types’ on page 42.

Using ASN.1 Encoding Rules with the SDL Suite

The ASN.1 constructs defined in ITU-T Recommendation X.690 and
X.691 are supported, which is explained in “ASN.1 Encoding and De-
coding in the SDL Suite” on page 2755 in chapter 59, ASN.1 Encoding
and De-coding in the SDL Suite, in the User’s Manual.

Telelogic Tau 4.5 SDL Suite Methodology Guidelines 123

Chapter 2 Data Types

124

Sharing Data between SDL and TTCN

One more advantage of ASN.1 isthat TTCN is also based on this lan-
guage. By specifying the parameters of signalsto and from the environ-
ment of the SDL system with ASN.1 datatypes, thisinformation can be
re-used in the TTCN suite for the specification of test cases for the sys-
tem.

ASN.1

uy' ~\m

SDL TTCN

Figure 51: Sharing ASN.1 definitions between SDL and TTCN

This has the big advantage of making it easier to keep the SDL specifi-
cation consistent with the TTCN test specification.

The use of external ASN.1in TTCN is covered in more detail in the
TTCN suite manual. In this section we will briefly illustrate how to
share data between SDL and TTCN using TTCN Link.

Supposing we have to write atest suite for the SDL system with the
Colors example, we would add anew diagram —aTTCN Test Suite,
for example caled colorTest —to the Organizer. In this test suite we
want to use definitions from the ASN.1 module MmyModule that contains
the colors datatype. For thispurpose we need to set adependency link
between the ASN.1 module and the test suite. We do this by selecting
the ASN.1 module in the Organizer. By using Generate/Dependencies
we connect it to the TTCN test suite colorTest.

We can also use TTCN Link to generate declarations from SDL system
MySDLSys. For this purpose, it is easiest to associate the SDL system
with the TTCN test suite. Thisis done by selecting the SDL system di-
agram in the Organizer and associate it with the TTCN test suite using
Edit/Associate. The Organizer View for the test suite now looks asin
Figure 52 below:

Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

Using ASN.1in SDL

July 2003

File

ey

MyBlock
MyProc

TTCN Test Specification

ColorTest
{1 MySDLSys

LASH MyModule

myblock.sbk

MY Proc.5pr

ColorTest.itex

Test Suite ColorTest

Figure 52: Organizer view of a test suite that uses ASN.1

We can generatea TTCN Link executablefor the SDL system by select-
ing the SDL system in the Organizer and using Generate/Make select

standard kernel TTCN Link. Now we can start the TTCN suite by dou-
ble-clicking on test suite colorTest. By using TTCN Link/Generate

Declarations, we can automatically generate the PCOs, A SP type defi-
nitions and ASN.1 type definitions. If we look at the result, we can see
that color ispresent as an ASN.1 Type Definition by Reference. This
table is shown below.

ASH. 1 Type Definitions By Reference in ColorTest

SDT Link

ASN.1 Type Definitions By Reference

Type MHame

Type Reference

Maodule Identifier

Encoding Variation

Calor

Caolor

Py Module

Detailed Comments ;

Figure 53: Resulting table in the TTCN suite

Telelogic Tau 4.5 SDL Suite Methodology Guidelines

125

Chapter 2 Data Types

Now thisdatatype can be used in creating test cases, in constraints, etc.
If at some point in time the definition of color would be changed (for
example if we would add a new color), then, in order to update the test
suite accordingly, we can select the TTCN tablefor color. Inthe Ana-
lyzer dialog, we should select both Enable Forced Analysis and Re-
trieve ASN.1 Definitions. Now the TTCN test suite will be updated with
the new definition for color.

126 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

	2 Data Types
	Introduction
	Using SDL Data Types
	Predefined Sorts
	Bit
	Bit_string
	Boolean
	Character
	Charstring
	IA5String, NumericString, PrintableString, VisibleString
	Duration, Time
	Integer, Natural
	NULL
	Object_identifier
	Octet
	Octet_string
	Pid
	Real

	User Defined Sorts
	Syntypes
	Enumeration Sorts
	Struct
	Choice
	Inherits
	Predefined Generators

	Literals
	Operators
	Default Value
	Generators

	Using C/C++ in SDL
	Introduction
	Workflow
	Editing
	Analyzing
	Generating
	Simulating
	Summary of the AccessControl Example

	Import Specification
	Templates

	Accessing C/C++ Constructs not Fully Supported by CPP2SDL
	Accessing C/C++ Macros from SDL
	Function Pointers
	Unsupported Overloaded Operators

	C Specific Package ctypes
	Different Int Types and Float
	Charstar, Voidstar, Voidstarstar
	The Carray Generator
	The Ref Generator
	Pointers Will Lead to Data Inconsistency
	Pointers Are Unpredictable
	Pointers Do Not Work in Real Distributed Systems
	Pointers Are Not Portable
	Using Pointers in SDL
	Using Linked Structures with Pointers

	Using ASN.1 in SDL
	Organizing ASN.1 Modules in the SDL Suite
	Using ASN.1 Types in SDL
	Using Predefined ASN.1 Types in SDL
	Using ASN.1 Encoding Rules with the SDL Suite

	Sharing Data between SDL and TTCN

