
July 2003 Telelogic Tau 4.5

Chapter
2 Data Types
This chapter describes how data types are handled in the SDL suite.
An overview of all supported SDL data types is given, including ex-
amples and guidelines. It is also explained how to use C/C++ and
ASN.1, in combination with the SDL suite.
 SDL Suite Methodology Guidelines mg-s0 41

Chapter 2 Data Types
Introduction
An important and often difficult aspect of system design and implemen-
tation is how to handle data in the system.

The SDL suite offers several ways to use data:

• SDL-specific data types can be used

• Access to C/C++ data types and functions is supported

• ASN.1 data types can be used

This chapter gives an overview of all available data types, together with
some guidelines of how to use these different data types, illustrated with
a number of examples.

Using SDL Data Types
In this section, an overview is given of the data types that are available
in SDL. SDL contains a number of predefined data types. Based on
these predefined types it is possible to define user-specific data types.
Types, or according to SDL terminology, “sorts”, are defined using the
keywords newtype and endnewtype.

Example 1: Newtype definition ––––––––––––––––––––––––––––––––

newtype example1 struct
 a integer;
 b character;
endnewtype;

––

A newtype definition introduces a new distinct type, which is not com-
patible with any other type. So if we would have another newtype
otherexample with exactly the same definition as example1 above, it
would not be possible to assign a value of example1 to a variable of
otherexample.

It is also possible to introduce types, syntypes, that are compatible with
their base type, but contain restrictions on the allowed value set for the
type. Syntypes are defined using the keywords syntype and
endsyntype.
42 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
Example 2: Syntype definition–––––––––––––––––––––––––––––––––

syntype example2 = integer
 constants 0:10
endsyntype;

––

The syntype example2 is an integer type, but a variable of this type is
only allowed to contain values in the specified range 0 to 10. Such a
constant clause is called a range condition. The range check is per-
formed when the SDL system is interpreted. Without a range condition
a syntype definition just introduces a new name for the same sort.

For every sort or syntype defined in SDL, the following operators are
always defined:

• := (assignment)
• = (test for equality)
• /= (test for non-equality)

These operators are not mentioned among the available operators in the
rest of this section. Operators are defined in SDL by a type of algebra
according to the following example:

“+” : Integer, Integer -> Integer;
num : Character -> Integer;

The double quotes around the + indicate that this is an infix operator.
The above + takes two integer parameters and returns an integer value.
The second operator, num, is a prefix operator taking one Character and
returning an Integer value. The operators above can be called within ex-
pressions in, for example, task statements:

task i := i+1;
task n := num(’X’);

where it is assumed that i and n are integer variables. It is also allowed
to call an infix operator as a prefix operator:

task i := “+”(i, 1);

This means the same as i:= i+1.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 43

Chapter 2 Data Types
Predefined Sorts
The predefined sorts in SDL are defined in an appendix to the SDL Rec-
ommendation Z100. Some more predefined sorts are introduced in the
Recommendation Z105, where it is specified how ASN.1 is to be used
in SDL. These types should not be used if the SDL system must con-
form to Z.100. The SDL suite also offers Telelogic-specific operators
for some types. These operators should not either be used if your SDL
system must be Z.100 compliant. The rest of this chapter describes all
predefined sorts. Unless stated otherwise, the sort is part of recommen-
dation Z.100.

Bit

The predefined Bit can only take two values, 0 and 1. Bit is defined in
Z.105 for the definition of bit strings, and is not part of Z.100. The op-
erators that are available for Bit values are:

"not" : Bit -> Bit
"and" : Bit, Bit -> Bit
"or" : Bit, Bit -> Bit
"xor" : Bit, Bit -> Bit
"=>" : Bit, Bit -> Bit

These operators are defined according to the following:

• not :
inverts the bit; 0 becomes 1 and 1 becomes 0,
not 0 gives 1, not 1 gives 0

• and :
if both parameters are 1, the result is 1, else it is 0,
0 and 0 gives 0, 0 and 1 gives 0, 1 and 1 gives 1

• or :
if both parameters are 0, the result is 0, else it is 1,
0 or 0 gives 0, 0 or 1 gives 1, 1 or 1 gives 1

• xor :
if parameters are different, the result is 1, else it is 0,
0 xor 0 gives 0, 0 xor 1 gives 1, 1 xor 1 gives 0

• => (implication) :
if first parameter is 1 and second is 0, the result is 0, else it is 1,
0 => 0 gives 1, 1 => 0 gives 0, 0 => 1 gives 1, 1 => 1
gives 1
44 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
The Bit type has most of its properties in common with the Boolean
type, which is discussed below. By replacing 0 with false and 1 with
true the sorts are identical.

Bit and Boolean should be used to represent properties in a system that
can only take two values, like on - off. In the choice between Bit and
Boolean, Boolean is recommended except if the property to be repre-
sented is about bits and the literals 0 and 1 are more adequate than
false and true.

Bit_string

The predefined sort Bit_string is used to represent a string or se-
quence of Bits. Bit_string is defined in Z.105 to support the ASN.1 BIT
STRING type, and is not part of Z.100. There is no limit on the number
of elements in the Bit_string.

The following operators are defined in Bit_string:

mkstring : Bit -> Bit_string
length : Bit_string -> Integer
first : Bit_string -> Bit
last : Bit_string -> Bit
"//" : Bit_string, Bit_string -> Bit_string
substring : Bit_string, Integer, Integer
 -> Bit_string
bitstr : Charstring -> Bit_string
hexstr : Charstring -> Bit_string
"not" : Bit_string -> Bit_string
"and" : Bit_string, Bit_string -> Bit_string
"or" : Bit_string, Bit_string -> Bit_string
"xor" : Bit_string, Bit_string -> Bit_string
"=>" : Bit_string, Bit_string -> Bit_string

These operators are defined as follows:

• mkstring :
This operator takes a Bit value and converts it to a Bit_string of
length 1.
mkstring (0) gives a Bit_string of one element, i.e. 0

• length :
The number of Bits in the Bit_string passed as parameter.
length (bitstr(’0110’)) = 4
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 45

Chapter 2 Data Types
• first :
The value of the first Bit in the Bit_string passed as parameter. If the
length of the Bit_string is 0, then it is an error to call the first oper-
ator.
first (bitstr (’10’)) = 1

• last :
The value of the last Bit in the Bit_string passed as parameter. If the
length of the Bit_string is 0, then it is an error to call the last opera-
tor.
last (bitstr (’10’)) = 0

• // (concatenation) :
The result is a Bit_string with all the elements in the first parameter,
followed by all the elements in the second parameter.
bitstr(’01’)//bitstr(’10’) = bitstr(’0110’)

• substring :
The result is a copy of a part of the Bit_string passed as first param-
eter. The copy starts at the index given as second parameter. The
first Bit has index 0. The length of the copy is specified by the third
parameter. It is an error to try to access elements outside of the true
length of the first parameter.
substring (bitstr(’0110’), 1, 2) = Bitstr(’11’)

• bitstr :
This Telelogic-specific operator converts a charstring containing
only characters 0 and 1, to a Bit_string with the same length and
with the Bit elements set to the corresponding values.

• hexstr :
This Telelogic-specific operator converts a charstring containing
HEX values (0 -9, A-F, a-f) to a Bit_string. Each HEX value is con-
verted to four Bit elements in the Bit_string.
hexstr(’a’) = bitstr(’1010’),

hexstr(’8f’) = bitstr(’10001111’)

• not :
The result is a Bit_string with the same length as the parameter,
where the not operator in the Bit sort has been applied to each ele-
ment, that is each element has been inverted.
not bitstr (’0110’) = bitstr (’1001’)
46 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
• and :
The result is a Bit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the and operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bits in the result (if any) are
set to 0.
bitstr(’01101’) and bitstr(’101’) = bitstr(’00100’)

• or :
The result is a Bit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the or operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bits in the result (if any) are
set to 1.
bitstr(’0110’) or bitstr(’00110’) = bitstr(’01111’)

• xor :
The result is a Bit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the xor operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bits in the result (if any) are
set to 1.
bitstr(’10100’) xor bitstr(’1001’) = bitstr(’00111’)

• => (implication) :
The result is a Bit_string with the same length as the longest of the
two parameters. Each Bit element in the result is computed by ap-
plying the => operator in Bit sort to the corresponding Bit elements
in the parameters. This calculation is performed up to the length of
the shortest parameter. The remaining Bits in the result (if any) are
set to 1.
bitstr (’1100’) => bitstr (’0101’) = bitstr (’0111’)
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 47

Chapter 2 Data Types
It is also possible to access Bit elements in a Bit_string by indexing a
Bit_string variable. Assume that B is a Bit_string variable. Then it is
possible to write:

task B(2) := B(3);

This would mean that Bit number 2 is assigned the value of Bit number
3 in the variable B. Is is an error to index a Bit_string outside of its
length.

Boolean

The newtype Boolean can only take two values, false and true. The
operators that are available for Boolean values are:

"not" : Boolean -> Boolean
"and" : Boolean, Boolean -> Boolean
"or" : Boolean, Boolean -> Boolean
"xor" : Boolean, Boolean -> Boolean
"=>" : Boolean, Boolean -> Boolean

These operators are defined according to the following:

• not :
inverts the value.

not false = true
not true = false

• and :
If both parameters are true then the result is true, else it is false.

false and false = false
false and true = false
true and false = false
true and true = true

• or :
If both parameters are false then the result is false, else it is true.

false or false = false
false or true = true
true or false = true
true or true = true

Note:

The first Bit in a Bit_string has index 0, whereas most other string
types in SDL start with index 1!
48 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
• xor :
If parameters are different then the result is true, else it is false.

false xor false = false
false xor true = true
true xor false = true
true xor true = false

• => (implication) :
If the first parameter is true and second is false then the result is
false, else it is true.

false => false = true
false => true = true
true => false = false
true => true = true

The Bit sort, discussed above, has most of its properties in common with
the Boolean sort. By replacing 0 with false and 1 with true the sorts
are identical. Normally it is recommended to use Boolean instead of Bit;
for a more detailed discussion see “Bit” on page 44.

Character

The character sort is used to represent the ASCII characters. The
printable characters have literals according to the following example:

’a’ ’-’ ’?’ ’2’ ’P’ ’’’’

Note that the character ’ is written twice in the literal. For the non-print-
able characters, specific literal names have been included in the Char-
acter sort. The following:

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, IS4, IS3, IS2, IS1

correspond to the characters with number 0 to 31, while the literal

DEL

corresponds to the character number 127.

The operators available in the Character sort are:

"<" : Character, Character -> Boolean;
"<=" : Character, Character -> Boolean;
">" : Character, Character -> Boolean;
">=" : Character, Character -> Boolean;
num : Character -> Integer;
chr : Integer -> Character;
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 49

Chapter 2 Data Types
The interpretation of these operators are:

• <, <=, >, >= :
These relation operators work with the character numbers according
to the ASCII table.

• num :
This operator converts a Character value to its corresponding char-
acter number. For example: num(’A’) = 65

• chr :
This operator converts an Integer value to its corresponding charac-
ter. If the parameter is less than 0 or bigger than 255, it is first taken
modulo 256 (using the mod operator in sort Integer). For example:
chr(65) = ’A’

In Z.100 characters in the range 0 to 127 are supported. However Tele-
logic has introduced support for characters in the range 0 to 255. This
means two things

The operator num works modulo 256, not modulo 128 as it is defined in
Z.100.

The following literals (128 to 255) are added to the Character sort:

E_NUL, E_SOH, E_STX, E_ETX, E_EOT, E_ENQ, E_ACK, E_BEL,
E_BS, E_HT, E_LF, E_VT, E_FF, E_CR, E_SO, E_SI,
E_DLE, E_DC1, E_DC2, E_DC3, E_DC4, E_NAK, E_SYN, E_ETB,
E_CAN, E_EM, E_SUB, E_ESC, E_IS4, E_IS3, E_IS2, E_IS1,
' ', '¡', '¢', '£', '¤', '¥', '¦', '§',
'¨', '©', 'ª', '«', '¬', '-', '®', '¯',
'°', '±', '²', '³', '´', 'µ', '¶', '·',
'¸', '¹', 'º', '»', '¼', '½', '¾', '¿',
'À', 'Á', 'Â', 'Ã', 'Ä', 'Å', 'Æ', 'Ç',
'È', 'É', 'Ê', 'Ë', 'Ì', 'Í', 'Î', 'Ï',
'Ð', 'Ñ', 'Ò', 'Ó', 'Ô', 'Õ', 'Ö', '×',
'Ø', 'Ù', 'Ú', 'Û', 'Ü', 'Ý', 'Þ', 'ß',
'à', 'á', 'â', 'ã', 'ä', 'å', 'æ', 'ç',
'è', 'é', 'ê', 'ë', 'ì', 'í', 'î', 'ï',
'ð', 'ñ', 'ò', 'ó', 'ô', 'õ', 'ö', '÷',
'ø', 'ù', 'ú', 'û', 'ü', 'ý', 'þ', 'ÿ';

Charstring

The Charstring sort is used to represent strings or sequences of char-
acters. There is no limit for the length of a Charstring value. Charstring
literals are written as a sequence of characters enclosed between two
50 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
single quotes: ’abc’. If the Charstring should contain a quote (’) it
must be written twice.

’abcdef 0123’
’$%@^&’
’1’’2’’3’ /* denotes 1’2’3 */
’’ /* empty Charstring */

The following operators are available for Charstrings:

mkstring : Character -> Charstring;
length : Charstring -> Integer;
first : Charstring -> Character;
last : Charstring -> Character;
"//" : Charstring, Charstring -> Charstring;
substring : Charstring, Integer, Integer
 -> Charstring;

These operators are defined as follows:

• mkstring :
This operator takes one Character value and converts it to a Char-
string of length 1. For example: if c is a variable of type Character,
then mkstring(c) is a Charstring containing character c.

• length :
This operator takes a Charstring as parameter and returns its number
of characters.
length (’hello’) = 5

• first :
The value of the first Character in the Charstring passed as parame-
ter. If the length of the Charstring is 0, then it is an error to call the
first operator.
first (’hello’) = ’h’

• last :
The value of the last Character in the Charstring passed as parame-
ter. If the length of the Charstring is 0, then it is an error to call the
last operator.
last (’hello’) = ’o’

• // (concatenation) :
The result is a Charstring with all the elements in the first parameter,
followed by all the elements in the second parameter.
 ’he’ // ’llo’ = ’hello’.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 51

Chapter 2 Data Types
• substring :
The result is a copy of a part of the Charstring passed as first param-
eter. The copy starts at the index given as second parameter (Note:
first Character has index 1). The length of the copy is specified by
the third parameter. It is an error to try to access elements outside of
the true length of the first parameter.
substring (’hello’, 3, 2) = ’ll’

It is also possible to access Character elements in a Charstring by index-
ing a Charstring variable. Assume that C is a Charstring variable. Then
it is possible to write:

task C(2) := C(3);

This would mean that Character number 2 is assigned the value of Char-
acter number 3 in the variable C.

IA5String, NumericString, PrintableString, VisibleString

These Z.105 specific character string types are all syntypes of Char-
string with restrictions on the allowed Characters that may be contained
in a value. These sorts are mainly used as a counterpart of the ASN.1
types with the same names. The restrictions are:

• IA5String :
only NUL:DEL, i.e only characters in the range 0 to 127.

• NumericString :
only ’0’:’9’ and ’ ’

• PrintableString :
only ’A’:’Z’, ’a’:’z’, ’0’:’9’, ’ ’, ’’’’:’)’,
’+’:’/’, ’:’, ’=’, ’?’

• VisibleString:
only ’ ’:’~’

It is recommended to use these types only in relation with ASN.1 or
TTCN. In other cases use Charstring.

Note:

The first Character in a Charstring has index 1.
52 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
Duration, Time

The Time and Duration sorts have their major application area in con-
nection with timers. The first parameter in a Set statement is the time
when the timer should expire. This value should be of sort Time.

Both Time and Duration have literals with the same syntax as real val-
ues. Example:

245.72 0.0032 43

The following operators are available in the Duration sort:

"+" : Duration, Duration -> Duration;
"-" : Duration -> Duration;
"-" : Duration, Duration -> Duration;
"*" : Duration, Real -> Duration;
"*" : Real, Duration -> Duration;
"/" : Duration, Real -> Duration;
">" : Duration, Duration -> Boolean;
"<" : Duration, Duration -> Boolean;
">=" : Duration, Duration -> Boolean;
"<=" : Duration, Duration -> Boolean;

The following operators are available in the Time sort:

"+" : Time, Duration -> Time;
"+" : Duration, Time -> Time;
"-" : Time, Duration -> Time;
"-" : Time, Time -> Duration;
"<" : Time, Time -> Boolean;
"<=" : Time, Time -> Boolean;
">" : Time, Time -> Boolean;
">=" : Time, Time -> Boolean;

The interpretation of these operators are rather straightforward, as they
correspond directly to the ordinary mathematical operators for real
numbers. There is one “operator” in SDL that returns a Time value; now
which returns the current global system time.

Time should be used to denote “a point in time”, while Duration should
be used to denote a “time interval”. SDL does not specify what the unit
of time is. In the SDL suite, the time unit is usually 1 second.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 53

Chapter 2 Data Types
Example 3: Timers in SDL ––––––––––––––––––––––––––––––––––––

SET (now + 2.5, MyTimer)

After the above statement, SDL timer MyTimer will expire after 2.5
time units (usually seconds) from now.

––

You should note that according to SDL, Time and Duration (and Real)
possess the true mathematical properties of real numbers. In an imple-
mentation, however, there are of course limits on the range and preci-
sion of these values.

Integer, Natural

The Integer sort in SDL is used to represent the mathematical integers.
Natural is a syntype of Integer, allowing only integers greater than or
equal to zero.

Integer literals are defined using the ordinary integer syntax. Example:

0 5 173 1000000

Negative integers are obtained by using the unary - operator given be-
low. The following operators are defined in the Integer sort:

"-" : Integer -> Integer;
"+" : Integer, Integer -> Integer;
"-" : Integer, Integer -> Integer;
"*" : Integer, Integer -> Integer;
"/" : Integer, Integer -> Integer;
"mod" : Integer, Integer -> Integer;
"rem" : Integer, Integer -> Integer;
"<" : Integer, Integer -> Boolean;
">" : Integer, Integer -> Boolean;
"<=" : Integer, Integer -> Boolean;
">=" : Integer, Integer -> Boolean;
float : Integer -> Real;
fix : Real -> Integer;

The interpretation of these operators are given below:

• - (unary, i.e. one parameter) :
Negate a value, e.g. -5.

• +, -, * :
These operators correspond directly to their mathematical counter-
parts.
54 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
• / :
Integer division, e.g. 10/5 = 2, 14/5 = 2, -8/5 = -1

• mod, rem :

modulus and remainder at integer division. mod always returns a
positive value, while rem may return negative values, e.g.
14 mod 5 = 4, 14 rem 5 = 4, -14 mod 5 = 1, -14 rem 5

= -4

• <, <=, >, >= :
These operators correspond directly to their mathematical counter-
parts.

• float :

This operator converts an integer value to the corresponding Real
number, for example:
float (3) = 3.0

• fix :
This operator converts a real value to the corresponding Integer
number. It is performed by removing the decimal part of the Real
value.
fix(3.65) = 3, fix(-3.65) = -3

NULL

NULL is a sort coming from ASN.1, defined in Z.105. NULL does occur
rather frequently in older protocols specified with ASN.1. ASN.1 has
later been extended with better alternatives, so NULL should normally
not be used. The sort NULL only contains one value, NULL.

Object_identifier

The Z.105-specific sort Object_identifier also comes from ASN.1.
Object identifiers usually identify some globally well-known definition,
for example a protocol, or an encoding algorithm. Object identifiers are
often used in open-ended applications, for example in a protocol where
one party could say to the other “I support protocol version X”. “Proto-
col version X” could be identified by means of an object identifier.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 55

Chapter 2 Data Types
An Object_identifier value is a sequence of Natural values. This sort
contains one literal, emptystring, that is used to represent an
Object_identifier with length 0. The operators defined in this sort are:

mkstring : Natural -> Object_identifier
length : Object_identifier -> Integer
first : Object_identifier -> Natural
last : Object_identifier -> Natural
"//" : Object_identifier, Object_identifier
 -> Object_identifier
substring : Object_identifier, Integer, Integer
 -> Object_identifier
append : in/out Object_identifier, Natural;
(. .) : * Natural -> Object_identifier

These operators are defined as follows:

• mkstring :
This operator takes one Natural value and converts it to an
Object_identifier of length 1.
mkstring (8) gives an Object_identifier consisting of one ele-
ment, i.e. 8.

• length :
This operator takes an Object_identifier as parameter and returns its
number of object elements, i.e. Natural values.
length (mkstring (8)//mkstring(6)) = 2

length (emptystring) = 0

• first :
The value of the first Natural in the Object_identifier passed as pa-
rameter. If the length of the Object_identifier is 0, then it is an error
to call the first operator.
first (mkstring (8)//mkstring(6)) = 8

• last :
The value of the last Natural in the Object_identifier passed as pa-
rameter. If the length of the Object_identifier is 0, then it is an error
to call the last operator.
last (mkstring (8)//mkstring(6)) = 6

• // (concatenation) :
The result is a Object_identifier with all the elements in the first pa-
rameter, followed by all the elements in the second parameter.
mkstring (8) // mkstring (6) gives an Object_identifier of
two elements, 8 followed by 6.
56 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
• substring :
The result is a copy of a part of the Object_identifier passed as first
parameter. The copy starts at the index given as second parameter
(Note: first Natural has index 1). The length of the copy is specified
by the third parameter. It is an error to try to access elements outside
of the true length of the first parameter.
substring(mkstring(8)//mkstring(6),2,1) =mkstring(6)

• append :

append is a Telelogic extension and can be used to add a new com-
ponent to the end of an existing Object_identifier. append takes a
variable as first parameter and a Natural value as second. The vari-
able is then updated to include the second parameter as last compo-
nent in the Object_identifier. The reason for introducing this opera-
tor is that:
task append(V, 12);

is much more efficient than performing the same calculation as
task V := V // mkstring(12);

• (. .):
The (. .) expression, which is a Telelogic extension, is an appli-
cation of the implicit make operator. The make operator takes a se-
quence of Natural values and returns an Object_identifier that con-
tains these value in the order they are given.
Obj_id_var := (. 1, 2, 3 .) would give an Object_identifier
containing 1, 2 and 3.

It is also possible to access the Natural elements in an Object_identifier
by indexing an Object_identifier variable. Assume that C is a
Object_identifier variable. Then it is possible to write:

task C(2) := C(3);

This would mean that the Natural at index 2 is assigned the value of the
Natural at index 3 in the variable C. Note that the first Natural in an

Caution!

The append operator does not check the size constraints on the
string.

The concat operator should be used instead if you want range
checks to be performed.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 57

Chapter 2 Data Types
Object_identifier has index 1. It is an error to index an Object_identifier
outside of its length.
58 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
Octet

The Z.105-specific sort Octet is used to represent eight-bit values, i.e.
values between 0 and 255. In C this would correspond to unsigned char.
There are no explicit literals for the Octet sort. Values can, however,
easily be constructed using the conversion operators i2o and o2i dis-
cussed below.

The following operators are defined in Octet:

"not" : Octet -> Octet;
"and" : Octet, Octet -> Octet;
"or" : Octet, Octet -> Octet;
"xor" : Octet, Octet -> Octet;
"=>" : Octet, Octet -> Octet;
"<" : Octet, Octet -> Boolean;
"<=" : Octet, Octet -> Boolean;
">" : Octet, Octet -> Boolean;
">=" : Octet, Octet -> Boolean;
shiftl : Octet, Integer -> Octet;
shiftr : Octet, Integer -> Octet;
"+" : Octet, Octet -> Octet;
"-" : Octet, Octet -> Octet;
"*" : Octet, Octet -> Octet;
"/" : Octet, Octet -> Octet;
"mod" : Octet, Octet -> Octet;
"rem" : Octet, Octet -> Octet;
i2o : Integer -> Octet;
o2i : Octet -> Integer;
bitstr : Charstring -> Octet;
hexstr : Charstring -> Octet;

The interpretation of these operators is as follows:

• not, and, or, xor, => :
Apply the corresponding Bit operator for each of the eight bits in the
Octet. For example:
not bitstr (’00110101’) = bitstr (’11001010’)

• <, <=, >, >= :
Ordinary relation operators for the Octet values.

• shiftl, shiftr :
These Telelogic-specific operators are defined as left and right shift
in C, so shiftl(a,b) is defined as a<<b in C.
shiftl (bitstr(’1’), 4) = bitstr(’10000’)

shiftr (bitstr(’1010’), 2) = bitstr (’10’)
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 59

Chapter 2 Data Types
• +, -, *, /, mod, rem :
These operators are the mathematical corresponding operators. All
operations are, however, performed modulus 256.
i2o(250) + i2o(10) = i2o(4), o2i(i2o(4)-i2o(6)) = 254

• i2o :
This Telelogic-specific operator converts an Integer value to the
corresponding Octet value.
i2o (128) = hexstr (’80’)

• o2i :
This Telelogic-specific operator converts an Octet value to the cor-
responding Integer value.
o2i (hexstr (’80’)) = 128

• bitstr :
This Telelogic-specific operator converts a charstring containing
eight Bit values (“0” and “1”) to an Octet value.
bitstr(’00000011’) = i2o(3)

• hexstr :
This Telelogic-specific operator converts a charstring containing
two HEX values (“0”-“9”, “a”- “f”, “A”- “F”) to an Octet value.
hexstr(’01’) = i2o(1), hexstr(’ff’) = i2o(255)

It is also possible to read the individual bits in an Octet value by index-
ing an Octet variable. The index should be in the range 0 to 7.

Octet_string

The Z.105-specific sort Octet_string represents a sequence of Octet
values. There is no limit on the length of the sequence. The operators
defined in the Octet_string sort are:

mkstring : Octet -> Octet_string;
length : Octet_string -> Integer;
first : Octet_string -> Octet;
last : Octet_string -> Octet;
"//" : Octet_string, Octet_string
 -> Octet_string;
substring : Octet_string, Integer, Integer
 -> Octet_string;
bitstr : Charstring -> Octet_string;
hexstr : Charstring -> Octet_string;
bit_string : Octet_string -> Bit_string;
octet_string : Bit_string -> Octet_string;
60 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
These operators are defined as follows:

• mkstring :
This operator takes an Octet value and converts it to a Octet_string
of length 1.
mkstring (i2o(10)) gives an Octet_string containing one ele-
ment.

• length :
The number of Octets in the Octet_string passed as parameter.
length (i2o (8)//i2o (6)) = 2

length (hexstr (’0f3d88’)) = 3

length (bitstr (’’)) = 0

• first :
The value of the first Octet in the Octet_string passed as parameter.
If the length of the Octet_string is 0, then it is an error to call the first
operator.
first (hexstr (’0f3d88’)) = hexstr(’0f’) (= i2o(15))

• last :
The value of the last Octet in the Octet_string passed as parameter.
If the length of the Octet_string is 0, then it is an error to call the last
operator.
last (hexstr (’0f3d88’)) = hexstr(’88’) (= i2o(136))

• // (concatenation) :
The result is an Octet_string with all the elements in the first param-
eter, followed by all the elements in the second parameter.
hexstr(’0f3d’)//hexstr(’884F’) = hexstr(’’0f3d884f’)

• substring :
The result is a copy of a part of the Octet_string passed as first pa-
rameter. The copy starts at the index given as the second parameter.
The length of the copy is specified by the third parameter. It is an
error to try to access elements outside of the true length of the first
parameter.
substring(hexstr(’0f3d889C’), 3, 2) = hexstr(’889c’)

• bitstr :
This Telelogic-specific operator converts a charstring containing
only characters 0 and 1, to an Octet_string with an appropriate
length and with the Octet elements set to the value defined in the se-
quences of eight bits. If the Charstring length is not a multiple of
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 61

Chapter 2 Data Types
eight, it is padded with zeros.
bitstr (’101’) = bitstr (’10100000’)

• hexstr :
This Telelogic-specific operator converts a charstring containing
HEX values (0 -9, A-F, a-f) to an Octet_string. Each pair of HEX
values are converted to one Octet element in the Octet_string. If the
Charstring length is not a multiple of two, it is padded with a zero.
hexstr (’f’) = hexstr (’f0’)

• bit_string and octet_string :
These two operators convert values between Bit_string and
Octet_string.

It is also possible to access the Octet elements in an Octet_string by in-
dexing an Octet_string variable. Assume that C is an Octet_string vari-
able. Then it is possible to write:

task C(2) := C(3);

This would mean that the Octet at index 2 is assigned the value of Octet
at index 3 in the variable C. It is an error to index an Octet_string outside
of its length.

Pid

The sort Pid is used as a reference to process instances. Pid has only one
literal, Null. All other values are obtained from the SDL predefined
variables Self, Sender, Parent, and Offspring.

Real

Real is used to represent the mathematical real values. In an implemen-
tation there are of course always restrictions in size and precision of
such values. Examples of Real literals:

2.354 0.9834 23 1000023.001

Note:

The first Octet in an Octet_string has index 1.
62 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
The operators defined in the Real sort are:

"-" : Real -> Real;
"+" : Real, Real -> Real;
"-" : Real, Real -> Real;
"*" : Real, Real -> Real;
"/" : Real, Real -> Real;
"<" : Real, Real -> Boolean;
">" : Real, Real -> Boolean;
"<=" : Real, Real -> Boolean;
">=" : Real, Real -> Boolean;

All these operators have their ordinary mathematical meaning.

User Defined Sorts
All the predefined sorts and syntypes discussed in the previous section
can be directly used in, for example, variable declarations. In many cir-
cumstances it is however suitable to introduce new sorts and syntypes
into a system to describe certain properties of the system. A user-de-
fined sort or syntype can be used in the unit where it is defined, and also
in all its subunits.

Syntypes

A syntype definition introduces a new type name which is fully compat-
ible with the base type. This means that a variable of the syntype may
be used in any position where a variable of the base type may be used.
The only difference is the range check in the syntype. One exception ex-
ists. The actual parameter that corresponds to a formal in/out parameter
must be of the same syntype as the formal parameter. Otherwise proper
range tests cannot be performed.

Syntypes are useful for:

• Introducing a new name for an existing type
• Introducing a new type that has the same properties as an existing

type, but with a restricted value range
• Defining index sorts used in arrays

Example 4: Syntype definition–––––––––––––––––––––––––––––––––

syntype smallint = integer
 constants 0:10
endsyntype;

––
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 63

Chapter 2 Data Types
In this example smallint is the new type name, integer is the base
type, and 0:10 is the range condition. Range conditions can be more
complex than the one above. It may consist of a list of conditions, where
each condition can be (assume X to be a suitable value):

• =X a single value X is allowed
• X same as =X
• /=X all values except X are allowed
• >X all values >X are allowed
• >=X all values >=X are allowed
• <X all values <X are allowed
• <=X all values <=X are allowed
• X:Y all values >=X and <=Y are allowed

Example 5: Syntype definition –––––––––––––––––––––––––––––––––

syntype strangeint = integer
 constants <-5, 0:3, 5, 8, >=13
endsyntype;

––

In this example all values <-5, 0, 1, 2, 3, 5, 8, >=13 are allowed.

The range check introduced in a syntype is tested in the following cases
(assuming that the variable, signal parameter, formal parameter in-
volved is defined as a syntype):

• Assignment to a variable
• Assigning a value to a signal parameter in an output (also for the im-

plicit signals used in connection with import and remote procedure
calls)

• Assigning a value to an IN parameter in a procedure call
• Assigning a value to a process parameter in a create request action
• Assigning a value to a variable in an input
• Assigning a value to an operator parameter (also for the operator re-

sult)
• Assigning a value to a timer parameter in set, reset, or active

Enumeration Sorts

An enumeration sort is a sort containing only the values enumerated in
the sort. If some property of the system can take a relatively small num-
ber of distinct values and each value has a name, an enumeration sort is
probably suitable to describe this property. Assume for example a key
64 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
with three positions; off, stand-by, and service-mode. A suitable sort to
describe this would be:

Example 6: Enumeration sort –––––––––––––––––––––––––––––––––

newtype KeyPosition
 literals Off, Stand_by, Service_mode
endnewtype;

––

A variable of sort KeyPosition can take any of the three values in the
literal list, but no other.

Struct

The struct concept in SDL can be used to make an aggregate of data that
belongs together. Similar features can be found in most programming
languages. In C, for example, it is also called struct, while in Pascal it is
the record concept that has these properties. If, for example, we would
like to describe a person and would like to give him a number of prop-
erties or attributes, such as name, address, and phone number, we can
write:

newtype Person struct
 Name Charstring;
 Address Charstring;
 PhoneNumber Charstring;
endnewtype;

A struct contains a number of components, each with a name and a type.
If we now define variables of this struct type,

dcl p1, p2 Person;

it is possible to work directly with complete struct values, like in assign-
ments, or in tests for equality. Also individual components in the struct
variable can be selected or changed.

task p1 := (. ’Peter’, ’Main Road, Smalltown’,
 ’+46 40 174700’ .);
task BoolVar := p1 = p2;
task p2 ! Name := ’John’;
task CharstringVar := p2 ! Name;

The first task is an assignment on the struct level. The right hand side,
i.e. the (. .) expression, is an application of the implicit make operator,
that is present in all structs. The make operator takes a value of the first
component sort, followed by a value of the second component sort, and
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 65

Chapter 2 Data Types
so on, and returns a struct value where the components are given the
corresponding values. In the example above, the component Name in
variable p1 is given the value ’Peter’. The second task shows a test for
equality between two struct expressions. The third and fourth task
shows how to access a component in a struct. A component is selected
by writing:

VariableName ! ComponentName

Such component selection can be performed both in a expression (then
usually called extract) and in the left hand side of an assignment (then
usually called modify).

Bit Fields

A bit field defines the size in bits for a struct component. This feature is
not part of the SDL Recommendation, but rather introduced by Telelog-
ic to enable the generation of C bit fields from SDL. This means that the
syntax and semantics of bit fields follow the C counterpart very much.

Example 7: Bit fields –––

newtype example struct
 a Integer : 4;
 b UnsignedInt : 2;
 c UnsignedInt : 1;
 : 0;
 d Integer : 4;
 e Integer;
endnewtype;

––

The following rules apply to bit fields:

• The meaning of the bit field size, i.e. the : X (where X is an integer
number) is the same as in C. When generating C code from SDL,
the : X is just copied to the C struct that is generated from the SDL
struct.

• : 0 in SDL is translated to int : 0 in C.
• As C only allows int and unsigned int for bit field components

the same rule is valid in SDL: only Integer and UnsignedInt
(from package ctypes) may be used.

Bit fields should only be used when it is necessary to generate C bit
fields from SDL. Bit fields should not be used as an alternative to syn-
types with a constants clause; the SDL suite does not check violations
to the size of the bit fields.
66 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
Optional and Default values

To simplify the translation of ASN.1 types to SDL sorts, two new fea-
tures have been introduced into structs. Struct components can be op-
tional and they can have default values. Note that these features have
their major application area in connection with ASN.1 data types and
applying them in other situations is probably not a good idea, as they are
not standard SDL-96.

Example 8: Optional and default values–––––––––––––––––––––––––

newtype example struct
 a Integer optional;
 b Charstring;
 c Boolean := true;
 d Integer := 4;
 e Integer optional;
endnewtype;

––

The default values for component c and d, means that these components
are initialized to the given values.

An optional component may or may not be present in a struct value. Ini-
tially an optional component is not present. It becomes present when it
is assigned a value. It is an error to access a component that is not
present. It is possible to test if an optional component is present or not
by calling an implicit operator called

ComponentNamepresent

In the example above apresent(v) and epresent(v) can be used to
test whether components a and e are present or not, in the value stored
in variable v. A component that is present can be set to absent, i.e. not
present, again by calling the implicit operator

ComponentNameabsent

In the example above aabsent(v) and eabsent(v) can be used to set
the components to absent. Note that the absent operators are operators
without result.

Components with default values also have present and absent oper-
ators in the same way as optional components. They however do not
have the same semantics as for optional components. A component with
default value always has a value! Present and absent instead have to do
with encoding and decoding of ASN.1 values. A component that con-
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 67

Chapter 2 Data Types
tains its default value, i.e. is absent, is in some encoding schemes not en-
coded.

A component with default value is initialized with the default value and
has present equal to false. Present can for components with default val-
ues be seen as “is explicitly assigned some value”. This means that
when a component with default value is assigned a value, in an assign-
ment for example, present will become true (even if the component is
assigned the default value). The absent operator can be used to set the
component back to absent. This means that the absent operator performs
two things: assigns the component the default value and sets present to
false.

According to Z.105, the make operator for a struct does not include
components that are optional or contain a default value. Optional com-
ponents always become absent and components with default values are
always initialized with their default values. The struct example in the
previous example only contains one component that is not optional and
does not contain a default value. This means that a variable v of this type
can be assigned a struct value by:

task v := (. ‘hello’ .);

If we want to set the other components, this have to be performed in a
sequence of assignments after this assignment.

To simplify assigning a complete struct value to a struct in these cases,
Telelogic provide an alternative interpretation of make for a struct. You
specify that you want to use this alternative interpretation of make by
selecting Generate > Analyze > Details > Semantic Analysis > Include
optional fields in make operator.

The alternative make always takes all components as parameters. By in-
serting an empty position you can specify that you want the component
not present or given its default value. By giving a value you specify the
value to be assigned to that component. Using the example above again
it is possible to write:

task v := (. 1, ‘hello’, , 10, .);

This means that the first, second, and fourth components are given ex-
plicit values, while the third and fifth becomes absent.
68 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
Choice

The new concept choice is introduced into SDL as a means to represent
the ASN.1 concept CHOICE. This concept can also be very useful
while developing pure SDL data types. The choice in SDL can be seen
as a C union with an implicit tag field.

Example 9: Choice ––

newtype C1 choice
 a Integer;
 b Charstring;
 c Boolean;
endnewtype;

––

The example above shows a choice with three components. The inter-
pretation is that a variable of a choice type can only contain one of the
components at a time, so in the example above a value of C1 either con-
tains an Integer value, a Charstring value, or a Boolean value.

Example 10: Working with a choice type ––––––––––––––––––––––––

DCL var C1, charstr Charstring;

TASK var := a : 5; /* assign component a */
TASK var!b := ’hello’; /* assign component b
 (a becomes absent) */
TASK charstr := var!b; /* get component b */

––

The above example shows how to modify and extract components of a
choice type. In this respect, choice types are identical to struct types, ex-
cept the a:5 notation to denote choice values, whereas struct values are
described using (.).

Extracting a component of a choice type that is not present results in a
run-time error. Therefore it is necessary to be able to determine which
component is active in a particular value. For that purpose there are a
number of implicit operators defined for a choice.

var!present

where var is a variable of a choice type, returns a value which is the
name of the active component. This is made possible by introducing an
implicit enumeration type with literals with the same names as the
choice components. Note that this enumeration type is implicit and
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 69

Chapter 2 Data Types
should not be inserted by you. Given the example above, it is allowed
to test:

var!present = b

This is illustrated in Figure 26.

It is also possible to test if a certain component is active or not, by using
the implicit boolean operators ComponentNamepresent. To check if
component b in the example above is present it is thus possible to write:

bpresent(v)

The information about which component that is active can be accessed
using the present operators, but it is not possible to change it. This in-
formation is automatically updated when a component in a choice vari-
able is assigned a value.

The purpose of choice is to save memory or bandwidth. As it is known
that only one component at a time can contain a value, the compiler can
use overlay techniques to reduce the total memory for the type. Also
sending a choice value over a physical connection saves time, compared
to sending a corresponding struct.

The choice construct is Telelogic-specific, and not part of recommenda-
tion Z.105, so if you want to write portable SDL, you should not use
choice. Choice replaces the SDL suite #UNION code generator direc-
tive. It is recommended to replace #UNION directives by choice, as the
SDL suite has better tool support for the latter.

Inherits

It is possible to create a new sort by inheriting information from another
sort. It is possible to specify which operators and literals that should be
inherited and it is then possible to add new operators and literals in the
new type.

Figure 26: Check which component of a choice is present

DCL
intvar Integer,
cstrvar Charstring,
boolvar Boolean;

var! check which
component is
present

intvar :=
var!a

cstrvar :=
var!b

boolvar :=
var!c

a b c

present
70 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
Note that it is not really possible to change the type in itself by using
inheritance. It is, for example, not possible to add a new component to
a struct when the struct is inherited.

Our experience with inheritance so far has been that it is not as useful
as it might seem in the beginning, and that sometimes the use of inher-
itance leads to the need of qualifiers in a lot of places, as many expres-
sions are no longer semantically valid.

Example 11: Inherits–––

newtype NewInteger inherits Integer
 operators all;
endnewtype;

––

In the example above a new type NewInteger is introduced. This type
is distinct from Integer, i.e. an Integer expression or variable is not al-
lowed where a NewInteger is expected, and a NewInteger expression
or variable is not allowed where an Integer is expected. Since in the ex-
ample all literals and operators are inherited, all the integer literals 0, 1,
2, ..., are also available as NewInteger literals. For operators it means
that all operators having Integer as parameter or result type are copied,
with the Integer parameter replaced with a NewInteger parameter. This
is true for all operators, not only those defined in the Integer sort, which
may give unexpected effects, which will be illustrated below.

Example 12: Inherited operators–––––––––––––––––––––––––––––––

The following operators are some of the operators having Integer as pa-
rameter or result type:

“+” : Integer, Integer -> Integer;
“-” : Integer -> Integer;
“mod” : Integer, Integer -> Integer;
length : Charstring -> Integer;

The type NewInteger defined above will inherit these and all the others
having integer as parameter or result type. Note that length is defined in
the Charstring sort.

“+” : NewInteger, NewInteger -> NewInteger;
“-” : NewInteger -> NewInteger;
“mod” : NewInteger, NewInteger -> NewInteger;
length : Charstring -> NewInteger;

––
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 71

Chapter 2 Data Types
With this NewInteger declaration, statements like

decision length(Charstring_Var) > 5;

are no longer correct in the SDL system. It is no longer possible to de-
termine the types in the expression above. It can either be the length re-
turning integer that is tested against an integer literal, or the length re-
turning a NewInteger value that is tested against a NewInteger literal.

It is possible to avoid this kind of problem by specifying explicitly the
operators that should be inherited.

Example 13: Inherits –––

newtype NewInteger inherits Integer
 operators (“+”, “-”, “*”, “/”)
endnewtype;

––

Now only the enumerated operators are inherited and the problem with
length that was discussed above will not occur.

Predefined Generators

Array

The predefined generator Array takes two generator parameters, an in-
dex sort and a component sort. There are no restrictions in SDL on the
index and component sort.

Example 14: Array instantiation –––––––––––––––––––––––––––––––

newtype A1 Array(Character, Integer)
endnewtype;

––

The example above shows an instantiation of the Array generator with
Character as index sort and Integer as component sort. This means that
we now have created a data structure that contains one Integer value for
each possible Character value. To obtain the component value connect-
ed to a certain index value it is possible to index the array.
72 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
Example 15: Using an array type ––––––––––––––––––––––––––––––

dcl Var_A1 A1; /* Assume sort in example above */

task Var_A1 := (. 3 .);
task Var_Integer := Var_A1(’a’);
task Var_A1(’x’) := 11;

decision Var_A1 = (. 11 .);
 (true) : ...
 ...
enddecision;

––

The example above shows how to work with arrays. First we have the
expression (. 3 .). This is an application of the make! operator de-
fined in all array instantiations. The purpose is to return an array value
with all components set to the value specified in make. The first task
above thus assigns the value 3 to all array components. Note that this is
an assignment of a complete array value.

In the second task the value of the array component at index ’a’ is ex-
tracted and assigned to the integer variable Var_Integer. In the third
task the value of the array component at index ’x’ is modified and giv-
en the new value 11. The second and third task show applications of the
operators extract! and modify! which are present in all array instantia-
tions. Note that the operators extract!, modify!, and make! can only be
used in the way shown in the example above. It is not allowed to directly
use the name of these operators.

In the last statement, the decision, an equal test for two array values is
performed. Equal and not equal are, as well as assignment, defined for
all sorts in SDL.

The typical usage of arrays is to define a fixed number of elements of
the same sort. Often a syntype of Integer is used for the index sort, as in
the following example, where an array of 11 Pids is defined with indices
0 to 10.

Example 16: Typical array definition –––––––––––––––––––––––––––

syntype indexsort = Integer
 constants 0:10
endsyntype;

newtype PidArray Array (indexsort, Pid)
endnewtype;

––
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 73

Chapter 2 Data Types
Unlike most ordinary programming languages, there are no restrictions
on the index sort in SDL. In most programming languages the index
type must define a finite range of values possible to enumerate. In C, for
example, the size of an array is specified as an integer constant, and the
indices in the array range from 0 to the (size-1). In SDL, however, there
are no such limits.

Example 17: Array with infinite number of elements. ––––––––––––––

newtype RealArr Array (Real, Real)
endnewtype;

––

Having Real as index type means that there is an infinite number of el-
ements in the array above. It has, however, the same properties as all
other arrays discussed above. This kind of more advanced arrays some-
times can be a very powerful concept that can be used for implementing,
for example, a mapping table between different entities.

Example 18: Array to implement a mapping table –––––––––––––––––

newtype CharstringToPid Array (Charstring, Pid)
endnewtype;

The above type can be used to map a Charstring representing a name to
a Pid value representing the corresponding process instance.

––

String

The String generator takes two generator parameters, the component
sort and the name of an empty string value. A value of a String type is
a sequence of component sort values. There is no restriction on the
length of the sequence. The predefined sort Charstring, for example, is
defined as an application of the String generator.

Example 19: String generator –––––––––––––––––––––––––––––––––

newtype S1 String(Integer, empty)
endnewtype;

––

Above, a String with Integer components is defined. An empty string, a
string with the length zero, is represented by the literal empty.
74 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
The following operators are available in instantiations of String.

mkstring : Itemsort -> String
length : String -> Integer
first : String -> Itemsort
last : String -> Itemsort
"//" : String, String -> String
substring : String, Integer, Integer -> String
append : in/out String, Itemsort;
(. .) : * Itemsort -> String

In this enumeration of operators, String should be replaced by the string
newtype (S1 in the example above) and Itemsort should be replaced by
the component sort parameter (Integer in the example above). The op-
erators have the following behavior, with the examples based on type
String (Integer, empty):

• mkstring :
This operator takes one Itemsort value and converts it to a String of
length 1.
mkstring (-3) gives a string of one integer with value -3.

• length :
The number of elements, i.e. Itemsort values, in the String passed as
parameter.
length (empty) = 0, length(mkstring (2)) = 1

• first :
The value of the first Itemsort element in the String passed as pa-
rameter. If the length of the String is 0, then it is an error to call the
first operator.
first (mkstring (8) // mkstring (2)) = 8

• last :
The value of the last Itemsort element in the String passed as param-
eter. If the length of the String is 0, then it is an error to call the last
operator.
last (mkstring (8) // mkstring (2)) = 2

• // (concatenation) :
The result is a String with all the elements in the first parameter, fol-
lowed by all the elements in the second parameter.
mkstring (8) // mkstring(2) gives a string of two elements: 8
followed by 2.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 75

Chapter 2 Data Types
• substring :
The result is a copy of a part of the String passed as first parameter.
The copy starts at the index given as second parameter (Note: first
Itemsort element has index 1). The length of the copy is specified
by the third parameter. It is an error to try to access elements outside
of the true length of the first parameter.
substring (mkstring (8) // mkstring(2), 2, 1)

= mkstring(2)

• append :

append is a Telelogic extension and can be used to add a new com-
ponent to the end of an existing String. append takes a variable as
first parameter and a Itemsort value as second. The variable is then
updated to include the second parameter as last component in the
String. The reason for introducing this operator is that:
task append(V, Comp);

is much more efficient than performing the same calculation as
task V := V // mkstring(Comp);

• (. .):
The (. .) expression, which is a Telelogic extension, is an appli-
cation of the implicit make operator that is present in all strings. The
make operator takes a sequence of Itemsort values and returns a
String that contains these value in the order they are given.
String_var := (. 1, 2, 3 .) would give a string containing 1,
2 and 3.

It is also possible to access Itemsort elements in a String by indexing a
String variable. Assume that C is a String instantiation variable. Then it
is possible to write:

task C(2) := C(3);

This would mean that Itemsort element number 2 is assigned the value
of Itemsort element number 3 in the variable C. NOTE that the first el-
ement in a String has index 1. It is an error to index a String outside of
its length.

The String generator can be used to build lists of items of the same type,
although some typical list operations are computationally quite expen-
sive, like inserting a new element in the middle of the list.
76 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
Powerset

The Powerset generator takes one generator parameter, the item sort,
and implements a powerset over that sort. A Powerset value can be seen
as: for each possible value of the item sort it indicates whether that value
is member of the Powerset or not.

Powersets can often be used as an abstraction of other, more simple data
types. A 32-bit word seen as a bit pattern can be modeled as a Powerset
over a syntype of Integer with the range 0:31. If, for example, 7 is mem-
ber of the powerset this means that bit number 7 is set.

Example 20: Powerset generator ––––––––––––––––––––––––––––––

syntype SmallInteger = Integer
 constants 0:31
endsyntype;

newtype P1 Powerset(SmallInteger)
endnewtype;

––

The only literal for a powerset sort is empty, which represents a power-
set containing no elements. The following operators are available for a
powerset sort (replace Powerset with the name of the newtype, P1 in
the example above, and Itemsort with the Itemsort parameter,
SmallInteger in the example):

"in" : Itemsort, Powerset -> Boolean
incl : Itemsort, Powerset -> Powerset
incl : Itemsort, in/out Powerset;
del : Itemsort, Powerset -> Powerset
del : Itemsort, in/out Powerset;
length : Powerset -> Integer
take : Powerset -> Itemsort
take : Powerset, Integer -> Itemsort
"<" : Powerset, Powerset -> Boolean
">" : Powerset, Powerset -> Boolean
"<=" : Powerset, Powerset -> Boolean
">=" : Powerset, Powerset -> Boolean
"and" : Powerset, Powerset -> Powerset
"or" : Powerset, Powerset -> Powerset
(. .) : * Itemsort -> Powerset
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 77

Chapter 2 Data Types
These operators have the following interpretation (the examples are
based on newtype P1 of the above example, and it is supposed that vari-
able v0_1_2 of P1 contains elements 0, 1, and 2):

• in :
This operator tests if a certain value is member of the powerset or
not.
3 in incl (3, empty) gives true;
3 in v0_1_2 gives false, 0 in v0_1_2 gives true.

• incl :
Includes a value in the powerset. The result is a copy of the Power-
set parameter with the Itemsort parameter included. To include a
value that is already member of a powerset is a null-action.
incl (3, empty) gives a set with one element, 3,
incl (3, v0_1_2) gives a set with elements, 0, 1, 2, and 3.

• incl (second operator) :
This operator is a Telelogic extensions added as it is more efficient
than the standard incl. This operator updates a powerset variable
with a new component value.
task incl(3, v0_1_2); means the same as
task v0_1_2 := incl(3, v0_1_2);

• del :
Deletes a member in a powerset. The result is a copy of the Powerset
parameter with the Itemsort parameter deleted. To delete a value
that is not member of a powerset is a null-action.
del (0, v0_1_2) gives a set with element 1 and 2;
del (30, v0_1_2) = v0_1_2

• del (second operator) :
This operator is a Telelogic extensions added as it is more efficient
than the standard del operator. This operator updates a powerset
variable by removing a component value.
task del(3, v0_1_2); means the same as
task v0_1_2 := del(3, v0_1_2);

• length :
The number of elements in the powerset.
length (v0_1_2) = 3, length (empty) = 0
78 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
• take (one parameter) :
Returns one of the elements in the powerset, but it is not specified
which one.
take (v0_1_2) gives 0, 1, or 2 (unspecified which of these three)

• take (two parameters) :
Elements are implicitly numbered with in the powerset from 1 to
length(). The Telelogic-specific take operator returns the element
with the number passed as second parameter. This operator can be
used to “loop” through all elements of the set, as is illustrated in
Figure 27.

• < :
A<B, is A a true subset of B
incl (2, empty) < v0_1_2 = true,

incl (30, empty) < v0_1_2 = false

• > :
A>B, is B a true subset of A

• <= :
A<=B, is A a subset of B

• >= :
A>=B, is B a subset of A

Figure 27: Computing the sum of all elements in a Powerset

DCL
i, sum Integer,
p1var P1;

i := 1,
sum := 0

i <= length
(p1var)

sum := sum +
take (p1var, i)

i := i+1

true
false
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 79

Chapter 2 Data Types
• and :
Returns the intersection of the parameters, i.e. a powerset with the
element members of both parameters.
incl (2, incl (4, empty)) and v0_1_2 gives a set with one
element, visually 2.

• or :
Returns the union of the parameters, i.e. a powerset with the element
members of any of the parameters.
incl (2, incl (4, empty)) or v0_1_2 gives a set with ele-
ments, 0, 1, 2, and 4.

• (. .):
The (. .) expression, which is a Telelogic extension, is an appli-
cation of the implicit make operator, that is present in all powersets.
The make operator takes a sequence of Itemsort values and returns
a Powerset that contains these values.
v0_1_2 := (. 1, 2, 3 .) would give a set including 1, 2 and 3.

Powerset resembles the Bag operator, and normally it is better to use
Powerset. See also the discussion in “Bag” on page 80.

Bag

The Z.105-specific generator Bag is almost the same as Powerset. The
only difference is that a bag can contain the same value several times.
In a Powerset a certain value is either member or not member of the set.
A Bag instantiation contains the literal empty and the same operators,
with the same behavior, as a Powerset instantiation. For details please
see “Powerset” on page 77.

A Bag contains one additional operator:

makebag : Itemsort -> Bag

• makebag :
Takes an Itemsort value and returns a Bag containing this value
(length = 1).

It is recommended to use Powerset instead of Bag, except in cases
where the number of instances of a value is important. Powerset is de-
fined in Z.100, and is therefore more portable. Bag is mainly part of the
predefined data types in order to support the ASN.1 SET OF construct.
80 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
Ref, Own, Oref, Carray

These generators are Telelogic extensions to make it possible to work
with pointers (Ref, Own, Oref) and with array with the same properties
as in C.

Own and Oref is described in “Own and ORef Generators” on page 128
in chapter 3, Using SDL Extensions, while Ref and Carray is part of the
package ctypes described in “C Specific Package ctypes” on page 109.
The package ctypes also contains SDL versions of some simple C types,
which might be helpful in some cases.

Literals
Literals, i.e. named values, can be included in newtypes.

Example 21: Literals in struct newtype –––––––––––––––––––––––––

newtype Coordinates struct
 x integer;
 y integer;
 adding
 literals Origo, One;
endnewtype;

––

In this struct there are two named values (literals); Origo and One. The
only way in SDL to specify the values these literals represent is to use
axioms. Axioms can be given in a section in a newtype. This is not fur-
ther discussed here. The SDL to C compilers provide other ways to in-
sert the values of the literals. Please see the documentation in chapter
57, The Cadvanced/Cbasic SDL to C Compiler, in the User’s Manual.

The literals can be used in SDL actions in the same way as expressions.

Example 22: Use of literals –––––––––––––––––––––––––––––––––––

dcl C1 Coordinates;

task C1 := Origo;
decision C1 /= One;
...

––

Please note the differences in the interpretation of literals in the example
above and in the description of enumeration types, see “Enumeration
Sorts” on page 64. In an enumeration type each literal introduces a new
distinct value and the set of literals defines the possible values for the
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 81

Chapter 2 Data Types
type. In the struct example above, the type and the set of possible values
for the type is defined by the struct definition. The literals here only give
names on already existing values.

An alternative that might be more clear, is to use literals in the case of
an enumeration type and use operators without parameters (Telelogic
extension) in other cases, like the struct above.

Operators
Operators can be added to a newtype in the same way as literals.

Example 23: Operators in struct newtype –––––––––––––––––––––––

newtype Coordinates struct
 x integer;
 y integer;
 adding
 operators
 “+” : Coordinates, Coordinates -> Coordinates;
 length : Coordinates -> Real;
endnewtype;

––

Telelogic has extended the operators with a number of new features to
make them more flexible and to make it possible to have more efficient
implementations. Extensions:

• in/out parameters
• operators without parameters
• operators without result

Example 24: Operators –––––––––––––––––––––––––––––––––––––––

operators
 op1 : in/out Coordinates;
 op2 : -> Coordinates;
 op3 : ;

––

In the example above op1 takes one in/out parameter and has no result,
op2 has no parameters and returns a value of type Coordinates, while
op3 has neither parameters. nor result.

The behavior of operators can either be defined in axioms (as the literal
values) or in operator diagrams. An operator diagram is almost identical
to a value returning procedure (without states). An alternative to draw
82 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using SDL Data Types
the operator implementation as a diagram is to define it in textual form.
This might be appropriate as most operators performs calculations, and
does not have anything to do with process control or process communi-
cation. In this case the algorithmic extension described in “Compound
Statement” on page 138 in chapter 3, Using SDL Extensions could be of
great value.

Example 25: Operator implementations–––––––––––––––––––––––––

newtype Coordinates struct
 x integer;
 y integer;
 adding
 operators
 “+” : Coordinates, Coordinates -> Coordinates;
 operator “+” fpar a, b Coordinates
 returns Coordinates
 {
 dcl result Coordinates;
 result!x := a!x + b!x;
 result!y := a!y + b!y;
 return result;
 }
endnewtype;

––

In the SDL to C Compilers there is also the possibility to include imple-
mentations in the target language. The problem with this is that it is nec-
essary to know a lot more about the way the SDL to C Compilers trans-
late operators into C.

Default Value
In a newtype or syntype it is possible to insert a default clause stating
the default value to be given to all variables of this type.

Example 26: Default value in struct newtype–––––––––––––––––––––

newtype Coordinates struct
 x integer;
 y integer;
 default (. 0, 0 .);
endnewtype;

––

All variables of sort Coordinates will be given the initial value
(. 0, 0 .), except if an explicit default value is given for the variable
in the variable declaration.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 83

Chapter 2 Data Types
Example 27: Explicit default value in variable declaration ––––––––––

dcl
 C1 Coordinates := (. 1, 1 .),
 C2 Coordinates;

––

Here C1 has an explicit default value that is assigned at start-up. C2 will
have the default value specified in the newtype.

Generators
It is possible in SDL to define generators with the same kind of proper-
ties as the pre-defined generators Array, String, Powerset, and Bag. As
this is a difficult task and the support from the code generators is limit-
ed, it is not recommended for a non-specialist to try to define a genera-
tor.

The possibility to use user defined generators in the SDL to C Compil-
ers is described in more detail in “Generators” on page 2647 in chapter
57, The Cadvanced/Cbasic SDL to C Compiler, in the User’s Manual.
84 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
Using C/C++ in SDL

Introduction
To enable access to C or C++ declarations from an SDL specification,
translation rules from C/C++ to SDL have been developed, that specify
how C/C++ constructs may be represented in SDL. These translation
rules have been implemented in the SDL suite’s CPP2SDL tool.
CPP2SDL supports the translation of both C and C++ declarations.

When using CPP2SDL, it is possible to access C/C++ declarations and
definitions in SDL. Figure 28 shows how CPP2SDL takes a set of
C/C++ header files and, optionally, an import specification as input.
Note that the import specification is only optional when CPP2SDL is
executed from the command line. When using the utility from the Orga-
nizer, an import specification is created with a default configuration. An
import specification holds CPP2SDL options, and may also specify
which declarations in the header files are to be translated. CPP2SDL
then translates the C/C++ declarations in the header files to SDL decla-
rations. These resulting SDL declarations are saved in a generated
SDL/PR file. See “Introduction” on page 758 in chapter 15, ����
�����	
�����
��������������������� for more details.

.

Workflow
The typical workflow involved when using CPP2SDL will be illustrated
with an example based on the AccessControl system. The example can
be found in

������ ��	
����
��
�����
���
�������

 .pr

.is

Import specification

 .h

C/C++ header
files

�������

SDL/PR
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 85

Chapter 2 Data Types
Telelogic\SDL_TTCN_Suite4.5/sdt/examples/cpp_access.
Please note that the example currently runs on ����������	
. However,
the principles that are demonstrated are the same on all platforms.

The AccessControl system controls the access to a building. The build-
ing has a user terminal consisting of a display, a card reader and a key-
pad. To get access to the building, a valid card has to be inserted and a
correct 4-digit code has to be typed.

In this version of the AccessControl system, information about cards
and valid codes is stored in an external database. The database will be
accessed through ODBC1, which is a commonly used C/C++ API for
accessing data from different kinds of databases.

The purpose of the example is to show how a C/C++ API can be access-
ed from SDL by means of the tools in the C/C++ Access. The example
covers the most important issues regarding the usage of the C/C++ Ac-
cess, and may serve as a basis for more advanced experiments.

The example described below is a walk-through of how to utilize
CPP2SDL from within the Organizer. The different development phas-
es illustrated are:

• A PR symbol is added to the Central process diagram.

• The PR symbol is refined to be an import specification, by double-
clicking it and setting the document type to ���������������������
����.

• A TRANSLATE section is added to the import specification, in which
we list the names of all C/C++ declarations we need to access.

• The import specification is then saved in a file, and the import spec-
ification symbol is thereby automatically connected to this file.

• We use the CPP2SDL Options dialog to set various options for the
import specification.

• Finally, we add a header file to be translated.

1.ODBC is a de facto standard ����������, but it has also been imple-
mented on other platforms.
86 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
Editing

The first step in accessing a C/C++ API from SDL is to insert a PR sym-
bol at the place in the SDL specification where the C/C++ declarations
of the API are to be used. The PR symbol represents the inclusion of an
SDL/PR file, in general. In C/C++ Access this mechanism is used to in-
clude the SDL/PR file that is generated by CPP2SDL.

In the AccessControl example, we insert a PR symbol named ODBC in
the process Central. The ODBC API is accessed from this process ex-
clusively, thereby maintaining the narrowest possible scope.

Normally, an import specification should be placed at the highest level
where declarations imported by the import specification are used. How-
ever, if C/C++ variables are imported, the import specification must be
placed in a scope where external SDL variables are allowed to be de-
clared.

When a PR symbol has been added in the SDL Editor it will initially ap-
pear in the Organizer as an unconnected reference, see Figure 30.

�����

External variables cannot be declared at system or block level. They
can only be declared in processes, procedures, services or in opera-
tor diagrams.

������ ��	
���
��
������
��
���

��
 �����

������ !"	
���
��#����#���
��
������
��
���
$�����%��
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 87

Chapter 2 Data Types
By default, the Organizer assumes that an unconnected PR symbol is to
be connected to an ordinary user-defined SDL/PR file. In this case this
is not what we want. By double-clicking the PR symbol, either in the
SDL Editor or in the Organizer, an edit Document dialog is opened, see
Figure 31 on page 88. If we change the document type from �	
�� to
������������������������, we specify that the SDL/PR file is generated
from a set of C++ header files.

Since we want to create a new import specification, we leave the ���!�
����"���� check-box marked. If we already have an import specification
to be used, there are two methods of connecting it. The first approach is
to unmark all check-boxes and use the ������� command in the Orga-
nizer to connect to the existing import specification file. The second ap-
proach is to check the ���#��$�����%����� option and either browse for, or
input the path to, the existing import specification. When using this
method, it is necessary to view the file in the Text Editor, and then save
in order to connect it.

�����

Ordinary PR symbols are connected to user-defined SDL/PR files,
while import specification symbols are connected to generated
SDL/PR files.

������ !&	
 ���
���
����
�'
���
��
������
��
��
�
�((
)�����

��#�'�#�����
88 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
An import specification can be edited manually by means of the Text
Editor. However, an import specification can be left empty, and
CPP2SDL options set from within the Organizer at a later stage. This
will add a section called CPP2SDLOPTIONS where different options to
CPP2SDL are stored. Often an import specification will contain a
TRANSLATE section, with a list of the names of all declarations that you
wish to be made accessible in SDL. For more information, refer to “Im-
port Specification” on page 102.

In our case we add a TRANSLATE section with the names of all ODBC
functions and types that we will need to access from SDL. See
Figure 32.

When the import specification is saved to a file (called ODBC.is), the
Organizer will automatically connect the import specification symbol to
that file.

Figure 33 shows the connected import specification symbol.

TRANSLATE {

 SQLHENV
 SQLHDBC
 SQLHSTMT
 SQLRETURN
 SQLCHAR
 SQLINTEGER
 SQLSMALLINT
 SQLPOINTER

 SQLAllocHandle
 SQLSetEnvAttr
 SQLSetConnectAttr
 SQLConnect
 SQLBindCol
 SQLExecDirect
 SQLFetch
 SQLCloseCursor
 SQLFreeHandle
 SQLDisconnect
 SQLGetDiagRec

 unsigned char.[6]
 unsigned char.[64]
 unsigned char.[256]

 char.[256]

 strcpy
 strcat
}

������ !�
���
TRANSLATE
��#����
�'
���
$�*�
������
���#�'�#�����
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 89

Chapter 2 Data Types
The next step is to set appropriate options for the translation of the
C/C++ declarations that are specified in the import specification. This
is best done by means of the �����	
�&�������dialog (see Figure 34).
This dialog is opened by right-clicking on the import specification sym-
bol in the Organizer. For more detailed information about the CPP2SDL
options, see “The CPP2SDL Tool” on page 757 in chapter 15, ����
�����	
�����
���������������������.

������ !!	
���
#����#���
������
���#�'�#�����
������
��
���
$�����%��

������ !+	
���
����
��
$������
������
90 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
The following options may be specified:

'
��%��%�

The language option specifies the input language, i.e. if C or C++
declarations shall be translated. If C is selected as input language,
CPP2SDL will assume that no C++ specific constructs are encoun-
tered in the input header files.

Note that this option determines if the import specification is a C or
C++ import specification. Refer to Figure 31 on page 88 where we
selected which type of import specification to use.

' 	������

These check-boxes make it possible to specify what C/C++ dialects
that are to be supported by CPP2SDL. If no check-boxes are
marked, the ANSI C/C++ dialect is supported.

In our example we use the ODBC implementation from the Mi-
crosoft Foundation Classes, so we need support for the Microsoft
dialect.

' ���������#��������������

If this check-box is set, Run-Time Type Information (RTTI) is as-
sumed and dynamic casting is supported.

' (���!�&)*����������%

Set this check-box if generated SDL cast operators are to support
slicing of C++ objects.

' ���%��+���	
���������������

When this check-box is set, SDL sorts will be recognized in the in-
put.

' ������������

The preprocessor to be used for preprocessing the input can be set
here. If no preprocessor is set, CPP2SDL will use Microsoft Visual
C/C++ Compiler (cl) in Windows and the standard C/C++ Prepro-
cessor (cpp) on UNIX.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 91

Chapter 2 Data Types
' �������������&������

The preprocessor options can be set in this field.

' �������
�(���#
���������
�,�#!��"
�����������
���"�������

These fields specify the prefixes and suffixes that are used when
C/C++ names must be modified in the SDL translation.

' -���������	
� �������������������.��"���������#���

Set this check-box if SDL representations for fundamental C/C++
types are to be included in the translation. These SDL representa-
tions are defined in SDL/PR files, which are described in detail in
“SDL Library for Fundamental C/C++ Types” on page 841 in chap-
ter 15, The CPP2SDL Tool, in the User’s Manual.

' &��#�-�����������������������#����!����/�������#

When this check-box is set, CPP2SDL will optimize the generation
of class pointer types.

When appropriate CPP2SDL options have been set for an import spec-
ification, the next step is to add the C/C++ header files that are to be
translated. This is done by selecting the import specification and, in the
0"�� menu, select (""�0$�����%111 Added header files will appear under
the import specification symbol in the Organizer, see ������ ��.

�����

It is normally recommended to preprocess the input C/C++ headers
with a compiler rather than a plain preprocessor. The reason for this
is that a compiler may set several useful preprocessor defines.

�����

If the SDL type representation option is set at several levels, this will
cause problems. SDL representations for fundamental types should
only be included at the highest level at which the types will be used.
For example, if two blocks in a system have import specifications
for accessing C/C++ declarations, SDL representations for funda-
mental C/C++ types should be included in the system, and not in the
blocks. This can be done by adding an empty import specification
without input headers at system level, that includes the SDL repre-
sentations for the fundamental C/C++ types.
92 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
An arbitrary number of header files can be added to an import specifi-
cation. They will all be processed using the options that are specified for
the import specification. In the AccessControl example only one header
file is added (includes.h).

To see the contents of a header file double-click on its symbol in the Or-
ganizer. The Text Editor will then open and display the contents of the
header file. If this is done on the includes.h header, we see that it ac-
tually includes several other header files. The reason for using a wrap-
per header like includes.h instead of adding the interesting headers
under the import specification directly, is that we would like to avoid
hard-coding the path to these files. By using #include <file> state-
ments, and preprocessing the file with the Microsoft Visual C++ com-
piler, the location of these files will be known at compile-time.

Let us summarize what we have done in the example so far. We have
edited the SDL system by adding a PR symbol, changed the PR symbol
to an import specification, added a TRANSLATE listing the needed dec-
larations, saved the import specification connecting it to the system,
configured CPP2SDL using the options dialog, and adding the header
file to the system.

This concludes the editing phase. It is now time to analyze the system.

Analyzing

The SDL declarations that are generated by CPP2SDL must be ana-
lyzed as case-sensitive SDL. Before starting the Analyzer, a case-sensi-
tivity option must therefore be set:

• Select ����� in the Organizer and start the ���������������%��.

• In the ���������������%��, double-click on the SDT symbol and
set �����������2� to �� (it is by default set to ���).

������ !,	
-��
������
'����
��
���
������
���#�'�#�����
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 93

Chapter 2 Data Types
The Analyzer will perform three major steps during the analysis of an
SDL system that contains C/C++ import specifications. During each
step a message will be printed in the Organizer Log window to indicate
the progress, see Figure 37.

������ !.	

��
#���/�������0�

��
��
���
���'����#�
1������

������ !2	
���
$�����%��
���
3����3
'��
���
�����%�
�����
94 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
�� ������	
�	������	
���������

The Analyzer requests the SDL Editor to perform an SDL/GR to
SDL/PR conversion. This means that all graphical SDL symbols are
converted to their textual representations. In particular, every PR
symbol will be represented by a #include ’filename.pr’ in the
SDL/PR, where filename.pr is the name of the file to which the
corresponding import specification is connected.

In our example we will thus get a #include ’ODBC.pr’ in the
SDL/PR representation of the process Central.

��
�
��	
�	���	
���������

This step is performed once for each import specification in the sys-
tem. The header files associated with an import specification are
parsed and analyzed by CPP2SDL. Errors that are reported during
this phase may, for example, be due to differences in language sup-
port and inappropriate preprocessor settings. If so, you can set the
correct language dialect and suitable preprocessor options in the
CPP2SDL Options dialog. Syntax errors and some semantic errors
in the header files will also be checked for during this phase. For
more information about how CPP2SDL handles errors, see “Exam-
ple usage of some C/C++ functionality” on page 846 in chapter 15,
The CPP2SDL Tool, in the User’s Manual.
If no errors are found, CPP2SDL will generate an SDL/PR file with
the result of the translation. Finally, some warnings may be printed,
for example to notify that certain declarations for some reason could
not be translated.

In our example we get a file called ODBC.pr when this step is fin-
ished.

�� ���
��
��	���	�����
��	���	��������

�����

CPP2SDL is not as good as a C/C++ compiler when it comes to er-
ror detection and error reports. It is thus strongly recommended to
make sure that the header files are semantically correct by running
them through a compiler, before they are translated to SDL.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 95

Chapter 2 Data Types
When all SDL/PR code has been generated the SDL Analyzer will
check for syntactic and semantic errors as usual. For example, it is
likely that many errors will be reported if case-sensitive SDL was
not set in the Preference Manager, see Figure 36. A common source
for errors is that SDL representations for fundamental types were;
not included at all, included at the wrong place in the SDL system,
or included many times in the same SDL scope entity.

Once we have got a clean analysis of the system, it is time to proceed
with code generation.

Generating

Code generation can be done either from the traditional ��3� dialog, or
from the more powerful tool �	
����%����%�0$����. To generate code
for a system containing C or C++ import specifications, it is preferred
to use the Targeting Expert. For example, it is much easier to link-in the
object files that belong to the translated header files, using the Targeting
Expert. The Make dialog will in the near future be discontinued in favor
of the Targeting Expert.

A system that contains one or more C++ import specifications must be
translated to C++ rather than C code. An option to the Code Generator
controls whether C or C++ code is generated. This option is automati-
cally set by the Analyzer if there are one or more C++ import specifica-
tions present in the Organizer view.

To start the Targeting Expert, select ���%����%�0$����111 in the -�������
menu in the Organizer. The Targeting Expert dialog will appear, see
Figure 38. For full information about all the settings and options provid-
ed by Targeting Expert, see chapter 60, �������%����%�0$����
�����������
�����������.
96 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
When one or more C++ import specifications are present in the SDL
system, the Targeting Expert will issue a warning that a C++ compiler
is needed to compile the generated code (see Figure 38). Next, right-
click Component, select Simulations, and then Simulation. The compil-
er may be set by pressing the ���������
��3�����3� icon, and then, un-
der the �������� tab, locating the compiler executable. Here we may
also specify compiler options and preprocessor settings.

In the AccessControl example, you can use the C++ Microsoft Simula-
tion kernel, and the generated code can be compiled with the Microsoft
Visual C++ compiler.

������ !�	
���

��
���������
 4����

�����

Make sure that the settings made in the CPP2SDL Options dialog
for the preprocessor and preprocessor settings match the settings
made in the Targeting Expert.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 97

Chapter 2 Data Types
To avoid getting loads of link errors, we also have to remember to link-
in several required Microsoft libraries (e.g. the Odbc32.lib library). This
is done under the
��3�� tab as shown in Figure 39. Simply add the file
to the List of files and save.

Now everything is ready for code generation. Press the ��3� or .����
��3� buttons and the Targeting Expert will instruct the Analyzer to an-
alyze the SDL system (see “Analyzing” on page 93) and then invoke the
C or C++ Code Generator. Finally the generated code will be compiled
and linked as specified to create a simulator executable. Figure 40
shows what the Targeting Expert may look like when this has been
done.

������ !�	
-��
���������
��
���
���������
 4����
98 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
Simulating

Naturally, it is possible to simulate and debug a system on SDL level
even if it uses C or C++ declarations. The standard SDL simulator can
be used for this.

A simulator will automatically start when making from Targeting Ex-
pert. At other times than making to start a simulation of a system, select
�	
 in the ����� menu in the Organizer or in the Targeting Expert. Then
select ������������ and the SDL Simulator user interface will start. To
load the simulator executable that was generated above, select .��� and
&���111 in the SDL Simulator UI.

For the AccessControl example, two customized buttons are available
for the Simulator UI. They may be loaded by selecting 4������ and then

��"111The “GUI” button starts a GUI for the AccessControl system and
waits for you to single-step or go through the system by interacting with
the GUI. The “GUI+MSC” button also activates the GUI, and in addi-

������ +"	
5���������
�
���������
'���
���
���������
 4����
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 99

Chapter 2 Data Types
tion generates an MSC trace. In Figure 41 an example of an MSC trace
of the AccessControl system is shown.

The Simulator will treat C++ classes as C structs, but with the additional
possibility of invoking the constructors of the class. For example, when
the value of a C++ class, that is instantiated in SDL, is changed from the
Simulator, the following steps are performed:

• The Simulator pops up a dialog showing a list of available construc-
tors. For example:

0 /* No constructor */

1 /* C() */

or, for a class with a user-defined constructor,
0 /* No constructor */

2 /* C(int) */

Type the number for the constructor that are to be invoked, if any.

• If a constructor was selected, the Simulator will prompt for its actual
arguments.

������ +&	
1
�
���#�
�'
���
-##����������
������
100 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
• Finally, the Simulator allows public member variables to be explic-
itly set using either the SDL or ASN.1 syntax. For example:

(. 1, true, ’x’ .) SDL syntax

{mv1 1, mv2 true, mv3 ’x’} ASN.1 syntax

Note that the ASN.1 syntax is more flexible since it contains the
names of the member variables.

The steps for instantiating a C++ class from the Simulator (e.g. by send-
ing a signal containing a parameter of class type) are similar to the ones
shown above.

Summary of the AccessControl Example

The walk-through of the AccessControl example above has shown the
typical workflow when using the C/C++ Access.

• The SDL specification is ���
�� by adding PR symbols to it, and
they are refined to become import specifications. C/C++ header
files are added under each import specification, and appropriate
translation options are set by means of the CPP2SDL Options dia-
log. A TRANSLATE section may also be added to the import specifi-
cation listing the names of the declarations to be translated.

• The SDL specification is �������� as case-sensitive SDL. Errors in
the C/C++ headers or in the SDL specification are detected by
CPP2SDL or the SDL Analyzer respectively.

• C or C++ code is ������
�� by using the Make dialog or, prefera-
bly, the Targeting Expert. The generated code is compiled and
linked together with additional object files.

• The SDL specification may be ��� ��
�� using the Simulator UI.

Figure 42 below shows the Organizer view of how the AccessControl
system may look like when it is completed.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 101

Chapter 2 Data Types
As can be seen in the figure, the Central process has one PR symbol that
has not been refined into an import specification. Instead this symbol is
connected to an ordinary SDL/PR file, macro.pr, that contains external
SDL synonyms that represent C/C++ macros that are needed in the calls
to the ODBC API. The sorts of these synonyms are imported by the
ODBC.is import specification. An alternative technique for accessing
C/C++ macros, based on the #CODE operator, is described in “Accessing
C/C++ Macros from SDL” on page 103.

Import Specification
The import specification is a text file written in a simple C/C++ style
syntax. You can specify exactly which declarations in the input header
files to access, by using an import specification. The specified subset of
the declarations is translated by CPP2SDL. The import specification
also enables access to e.g. class and function templates. For more infor-
mation about import specifications, see “Import Specifications” on page
771 in chapter 15, ���������	
�����
���������������������.

The example below shows a simple import specification where the
identifiers a_int, i_arr and func are made available in SDL.

������ +�	
$�����%��
0��3
�'
���
-##����������
������
102 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
��
��	� ����������	�����������������
���� ����������������������

TRANSLATE {
a_int
i_arr
func

}

��

If an identifier in an import specification refers to a declaration that de-
pends on other declarations, CPP2SDL will translate all these declara-
tions as well.

There are some more advanced constructs that can be used in an import
specification:

• Type Declarators

• Prototypes for Ellipsis Functions

For more information about these constructs, see “Advanced Import
Specifications” on page 773 in chapter 15, ���������	
�����
��������
�������������.

Templates

By using the CPP2SDL tool, instantiations of template declarations are
supported.

To be able to instantiate a C++ template, CPP2SDL needs information
about its actual template arguments. This information is given in an im-
port specification.

The C++ template declaration is not itself translated to SDL. Instead an
instantiation of the template is mapped to SDL.

Accessing C/C++ Constructs not Fully
Supported by CPP2SDL

Accessing C/C++ Macros from SDL

Macros are used for conditional compilation, but can also be used for
other purposes:

• To define constants: #define PI 3.1415
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 103

Chapter 2 Data Types
• To define types: #define BYTE char

• To define functions: #define max(a,b) a>b?a:b

Macros are not part of the C or C++ languages and are therefore not
translated to SDL. Instead, the preprocessor expands all macros before
CPP2SDL perform the translation.

To be able to access macro constants from SDL, the implicit #CODE op-
erator or SYNONYM can be used, see example below.

��
��	� ���������
������������
�������
���� ������������������

C++:

#define PI 3.1415;

SDL using #CODE:

dcl a double;

task a := #CODE(’PI’);

SDL using SYNONYM:

SYNONYM PI double = EXTERNAL ’C++’;

dcl a double;

task a := PI;

��

To be able to access macro definitions for types or functions, the macro
__CPP2SDL__ can be used. The __CPP2SDL__ macro is defined when
CPP2SDL executes, but not otherwise, and is used in a special header
file (called x.h in the examples below). This header file must then be
included in the set of header files that are translated by CPP2SDL.

The following examples illustrate how the __CPP2SDL__ macro can be
exploited to change C/C++ headers to make macro definitions for types
and functions available in SDL.
104 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
��
��	� �����
���� �
���!��������"�
���� ���������������������

#define BYTE char

In the C++ fragment above, the macro BYTE is used as if it were a type.
The preprocessor will resolve all BYTE occurrences, which result in that
BYTE cannot be available in SDL. To avoid this, the definition of BYTE
can be changed to the following:

����

#ifndef __CPP2SDL__
#ifdef BYTE
#undef BYTE
#endif
#define BYTE char
#else
typedef char BYTE;
#endif

The macro BYTE is now available as a type in SDL, since __CPP2SDL__
will be defined during the C++ to SDL translation. In the generated C++
code, BYTE is a macro, since __CPP2SDL__ will be undefined.

��

��
��	� �#���
���� �$�������!��������"�
���� ������������������

#define max(a,b) a>b?a:b

By defining max as a macro, max can be used as if it were a function.
The macro max can be used for any type for which > is defined. The
following definition makes max available in SDL for char and int.

����

#ifndef __CPP2SDL__
#ifdef max
#undef max
#endif
#define max(a,b) a>b?a:b
#else
int max(int a,int b);
char max(char a, char b);
#endif

With the above definition, max will be regarded as an operator by the
SDL system, since __CPP2SDL__ has been defined. When the C++
code generated from SDL is compiled, the C++ preprocessor will re-
solve the “function calls” to max, since the macro __CPP2SDL__ then
will be undefined.

��
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 105

Chapter 2 Data Types
Function Pointers

Function pointers are mapped to untyped pointers in SDL,
ptr_void(void*). This allows function pointers to be represented in
SDL. However, it is not possible to work with this SDL representation.
For example to call a function that the pointer points at or to assign the
function pointer with the address of an SDL operator, you have to do as
shown in the following example:

��
��	� ����%���&��$��������������� ���������������������������

C++:

int func1(int i, int j);
int con_sum(int a, int b, int (*F)(int,int));

Import Specification:

TRANSLATE {
func1
con_sum
}

SDL:

NEWTYPE global_namespace /*#NOTYPE*/
 OPERATORS
 con_sum : int, int, ptr_void -> int;
 func1 : int, int -> int;
ENDNEWTYPE global_namespace; EXTERNAL ’C++’;

SDL using #CODE alternative 1:

dcl
 sum int,
 pfunc ptr_void;

task {
 pfunc := #CODE(’(void*) &func1’);
 sum := con_sum(1,4,#CODE(’(int (*)(int,int))
#(pfunc)’));
};

SDL using #CODE alternative 2:

dcl
 sum int;

task {
 sum := con_sum(1,4,#CODE(’&func1’));
106 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using C/C++ in SDL
};

��

Unsupported Overloaded Operators

In both C++ and SDL, there is a possibility to override predefined op-
erators. In the table below, the overloaded C++ operators that
CPP2SDL supports are listed.

.

Both shift operators and the less/greater operators in C++ are mapped to
< and > in SDL. This mapping implies that overloading is supported on
either < and > or << and >> in SDL. If both these operator pairs are

��	�!���
�� ������!
��� ���	�!���
��

+ (binary) Addition +

- (binary) Subtraction -

* (binary) Multiplication *

* (unary prefix) Dereference *>

/ (binary) Division /

% (binary) Modulo rem

! (unary prefix) Not not

< (binary) Less <

> (binary) Greater >

<< (binary) Left Shift <

>> (binary) Right Shift >

== (binary) Equal =

!= (binary) Not Equal /=

<= (binary) Less Equal <=

>= (binary) Greater Equal >=

&& (binary) And and

|| (binary) Or or
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 107

Chapter 2 Data Types
overloaded, CPP2SDL will issue a warning, and select the former pair
to be represented in SDL.

Overloaded operators, that are not supported by CPP2SDL, can be han-
dled using the operator #CODE.
108 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 C Specific Package ctypes
C Specific Package ctypes
Telelogic offers a special package ctypes that contains data types and
generators that match C. It is described in detail in chapter 63, The ADT
Library, in the User’s Manual. The ctypes package should be used in
the following cases:

• if you want to use pointers in SDL
• if you need a data type that matches some specific C type (for ex-

ample short int) for which there is no corresponding SDL sort.
• if you use C headers directly in SDL In this case package ctypes

must be used.

The tables below list the data types and generators in ctypes and their
C counterparts.

The rest of this section explains how these data types and generators can
be used in SDL.

SDL Sort Corresponding C Type

ShortInt short int

LongInt long int

UnsignedShortInt unsigned short int

UnsignedInt unsigned int

UnsignedLongInt unsigned long int

Float float

Charstar char *

Voidstar void *

Voidstarstar void **

SDL Generator Corresponding C Declarator

Carray C array, i.e. []

Ref C pointer, i.e. *
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 109

Chapter 2 Data Types
Different Int Types and Float
ShortInt, LongInt, UnsignedShortInt, UnsignedInt,
UnsignedLongInt are all defined as syntypes of Integer, so from an
SDL point of view, these data types are really the same, and the normal
Integer operators can be used on these types. The only difference is that
the code that is generated for these types is different. Float is defined
as a syntype of Real.

Charstar, Voidstar, Voidstarstar
Charstar represents character strings (i.e. char *) in C. Charstar is not
the same as the SDL predefined type Charstring! Charstar is useful
when accessing C functions and data types that use char *. In other
cases it is better to use Charstring instead (see also “Charstring” on page
50). Conversion operators between Charstar and Charstring are avail-
able (see below).

Voidstar corresponds to void * in C. This type should only be used
when accessing C functions that have void * parameters, or that return
void * (in which case it is advised to “cast” the result directly to anoth-
er type).

Voidstarstar corresponds to void ** in C. This type is used in com-
bination with the Free procedure described in “Using Pointers in SDL”
on page 113. In rare cases this type is also needed to access C functions.

The following conversion operators in ctypes are useful:

cstar2cstring : Charstar -> CharString;
cstring2cstar : CharString -> Charstar;
cstar2vstar : Charstar -> Voidstar;
vstar2cstar : Voidstar -> Charstar;
cstar2vstarstar : Charstar -> Voidstarstar;

These operators have the following behavior:

• cstar2cstring:
Converts a C string to an SDL Charstring. For example if variable v
of type Charstar contains the C string “hello world”, then
cstar2cstring(v) = ’hello world’.

• cstring2cstar:
Converts an SDL Charstring to a C string, i.e. the opposite of
cstar2cstring.
110 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 C Specific Package ctypes
• cstar2vstar:
Converts a Charstar to a Voidstar. This operator is sometimes useful
when calling C functions with void * parameters.

• vstar2cstar:
Converts a Voidstar to a Charstar. This operator can for example be
used if a C function returns void *, but the result should be “casted”
to a char *.

The Carray Generator
The generator Carray in package ctypes is useful to define arrays that
have the same properties as C arrays. Carray takes two generator param-
eters; an integer value and a component sort.

Example 33: Carray instantiation ––––––––––––––––––––––––––––––

newtype IntArr Carray(10, Integer)
endnewtype;

The defined type IntArr is an array of 10 integers with indices 0 to 9,
corresponding to the C type

typedef int IntArr[10];

––

Two operators are available on instantiations of Carray; modify! to
change one element of the array, and extract! to get the value of one el-
ement in the array. These operators are used in the same way as in nor-
mal SDL arrays, see “Array” on page 72. There is no (.) notation
provided for denoting values of whole CArrays.

 modify! : Carray, Integer, Itemsort -> Carray;
 extract! : Carray, Integer -> Itemsort;

Example 34: Use of Carray in SDL –––––––––––––––––––––––––––––

DCL v IntArr, i Integer;

TASK v(0) := 3; /* modifies one element */
TASK i := v(9); /* extracts one element */

––

If a C array is used as parameter of an operator, it will be passed by ad-
dress, just as in C. This makes it possible to write operators that change
the contents of the actual parameters. In standard SDL this would not be
possible.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 111

Chapter 2 Data Types
The Ref Generator
The generator Ref in package ctypes is used to define pointer types.
The following example illustrates how to use this generator.

Example 35: Defining a pointer type ––––––––––––––––––––––––––––

newtype ptr Ref(Integer)
endnewtype;

The sort ptr is a pointer to Integer.

––

Standard SDL has no pointer types. Pointers have properties that cannot
be defined in normal SDL. Therefore they should be used very careful-
ly. Before explaining how to use the Ref generator, it is worthwhile to
list some of the dangers of using pointers in SDL.

Pointers Will Lead to Data Inconsistency

If more than one process can read/write to the same memory location by
means of pointers, data inconsistency can and will occur! Some exam-
ples:

• In a flight reservation system there is one seat left, and two reserva-
tion requests come in simultaneously. If pointers were used to check
the availability of seats, both requests might be approved! In litera-
ture this is called the “writers-writers problem”.

• A process may update some array variable. If at the same time an-
other process tries to read the variable by means of a pointer to the
array, the reading process may get a value were some elements of
the array are “new” while other elements are “old”, and the total re-
sult makes no sense. This is the classic “readers/writers problem”.

Even though tools such as the Simulator and Validator will be able to
detect a number of errors regarding pointers, there are situations that
cannot be detected with these tools! This is because the Validator and
Simulator assume a scheduling atomicity of at best one SDL symbol at
a time. This may not hold in target operating systems where one process
can be interrupted at any time (pre-emptive scheduling). If pointers are
used, data is totally unprotected, and data inconsistency may occur,
even though the Validator did not discover any problems! All these
problems can be avoided by using SDL constructs for accessing data,
like remote procedures and signal exchange.
112 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 C Specific Package ctypes
And if you do not obey this rule anyway: after passing a pointer, release
immediately the “old” pointer to prevent having several pointers to the
same data area. For example (for some pointer p):

OUTPUT Sig(p) TO ...;
TASK p := Null;

Pointers Are Unpredictable

If you have an SDL system that always works except during demonstra-
tions, then you have used pointers! Bugs with pointers may be very hard
to discover, as a system may (accidentally) behave correctly for a long
time, but then suddenly strange things may happen. Finding such bugs
may take very long time; in rare cases you might not find them at all!

Pointers Do Not Work in Real Distributed Systems

If an SDL system is “really” distributed, i.e. where processes have their
own memory space, it makes no sense to send a pointer to another pro-
cess, as the receiving process will not be able to do anything with it.
Therefore, by communicating pointers to other processes, limitations
are posed on the architecture of the target implementation.

Pointers Are Not Portable

The Ref generator and its operators are completely Telelogic-specific.
It is highly unlikely that SDL systems using pointers will run on other
SDL tools.

Using Pointers in SDL

If you still want to use pointers in SDL after all these warnings, this sec-
tion explains how to do this. A pointer type created by the Ref generator

Caution!

For the above stated reasons, never pass pointers to another pro-
cess! Not in an output, not in a remote procedure call, not in a create,
and not by exported/revealed variables!

Caution!

Bugs caused by pointers may be hard to find!
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 113

Chapter 2 Data Types
always has a literal value Null (corresponds to NULL in C), which is also
the default value. The literal Alloc is used for the dynamic creation of
new memory. Examples are given later.

The following operators are available for Ref types:

“*>” : Ref, Itemsort -> Ref;
“*>” : Ref -> Itemsort;
“&” : Itemsort -> Ref;
make! : Itemsort -> Ref;
free : in/out Ref;
“+” : Ref, Integer -> Ref;
“-” : Ref, Integer -> Ref;
vstar2ref : Voidstar -> Ref;
ref2vstar : Ref -> Voidstar;
ref2vstarstar : Ref -> Voidstarstar;

Furthermore, the following procedure is defined:

procedure Free; fpar p Voidstarstar; external;

These operators can be used in the following way:

• *> (postfix operator):
Gets/changes the contents of a pointer. This is a postfix operator, so
p*> returns the contents of pointer p. In SDL terminology this is the
extract and modify operators for pointers.

• & (prefix operator):
Address-operator. This is a prefix operator, so &var returns a point-
er to variable var.

• make! or (. .)
This constructor allocates new memory and assigns the parameter to
make to the newly allocated memory.

• free

This operator takes a pointer variable, frees the memory it refers to
and sets the pointer variable to Null.

• +, -:
used to add/subtract an offset to/from an address. This can be useful
to access arrays in C. These operators are defined as in C, e.g. if p

Note:

It is up to the user to keep track of all dynamically allocated data ar-
eas and to free them when they are no longer needed.
114 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 C Specific Package ctypes
is a pointer to some struct, then p+1 points to the next struct (not to
byte p+1).

• vstar2ref:
Converts Voidstar to another pointer type. Should only be used to
“cast” the result of C functions that return a void *.

• ref2vstar:
Converts a pointer to Voidstar. This is useful when calling C func-
tions that have void * parameters.

• ref2vstarstar:
Returns the address of the pointer as a void **. This operator is
needed when calling the Free procedure.

• Procedure Free: (NOTE: use free operator above instead)
This procedure is used to release memory that has previously been
allocated with alloc. This procedure is only provided for backward
compatibility, use the free operator described above instead.

Example 36: Use of the Ref operators ––––––––––––––––––––––––––

NEWTYPE ptr Ref(Integer)
ENDNEWTYPE;

DCL p ptr,
 i, j Integer;

TASK p := alloc; /* creates dynamically a new
 integer; p points at it */
/* here it should be checked that p != Null */
TASK p*> := 10; /* changes contents of p */
CALL free(p); /* releases the integer */
TASK p := (. 10 .); /* allocate and set to 10 */
CALL free(p); /* releases the integer again */
TASK p := &i; /* p now points to i */
TASK p*> := 5; /* changes contents of p, i.e. also
 i is changed! */
TASK j := p*>; /* gets contents of p (=5) */

––

Using Linked Structures with Pointers

Pointers are useful when defining linked structures like lists or trees. In
this section we give an example of a linked list containing integer val-
ues. Figure 43 shows an SDL fragment with data type definitions for a
linked list, and part of a transition that actually builds a linked list. A list
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 115

Chapter 2 Data Types
is represented by a pointer to an Item. Every Item contains a pointer
next to the next item in the list. In the last item of the list, next = Null.

Figure 44 shows an SDL fragment where the sum of all elements in a
list is computed. Note that this computation would never stop if there
would be an element that points back in the list, just to illustrate how
easy it is to make errors with pointers.

Figure 43: Building a linked list

Figure 44: Going through the list

newtypeIitem struct
 element Integer;
 next ItemPointer;
endnewtype;

newtype ItemPointer
 Ref (item)
endnewtype;

DCL
a Item,
list, help ItemPointer;

help := Alloc
dynamic
memory
allocation

help =
Null

 help*> :=
 (. 2, Null .)

assign value to the
contents of help

a!element := 1,
a!next := help

list := &a

falsetrue

DCL
iterator ItemPointer,
sum Integer;

iterator := list,
sum := 0

iterator = Null

sum := sum
+ iterator*>!element

iterator :=
iterator*>!next

false
true
116 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using ASN.1 in SDL
Using ASN.1 in SDL
ASN.1 is a language for defining data types that is frequently used in
the specification and implementation of telecommunication systems.
ASN.1 is defined in ITU-T Recommendations X.680-X.683. Recom-
mendation Z.105 defines how ASN.1 can be used together with SDL. A
subset of Z.105 is implemented in the SDL suite.

This chapter explains how ASN.1 data types can be used in SDL sys-
tems. The following items will be discussed:

• How to organize ASN.1 modules in the SDL suite

• How to use ASN.1 data types in SDL

• How to share ASN.1 data between SDL and TTCN

Organizing ASN.1 Modules in the SDL Suite
It is recommended to have a special chapter for ASN.1 modules (for ex-
ample called ASN.1 Modules). If many ASN.1 modules are used, they
may be grouped into Organizer modules (which is not the same as
ASN.1 modules!), see “Module” on page 42 in chapter 2, The Organiz-
er, in the User’s Manual.

Figure 45 shows an example of the Organizer look of a chapter with two
Organizer modules containing ASN.1 modules.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 117

Chapter 2 Data Types
We will show with an example how to use an ASN.1 module in an SDL
system. Suppose we have an ASN.1 module MyModule in file
mymodule.asn:

MyModule DEFINITIONS ::=
BEGIN

Color ::= ENUMERATED { red(0), yellow(1), blue(2) }

END

This module contains one type definition, Color, that has three values,
red, yellow, and blue.

We first add a new diagram of type Text ASN.1 to the Organizer using
Edit/Add New (without showing it in the Editor) and we connect it to the
file mymodule.asn (using Edit/Connect). In order to use the ASN.1
module in SDL, we edit the system diagram and add use MyModule;
in the package reference clause, as is illustrated in Figure 46 below.

Figure 45: Example of ASN.1 modules in the Organizer
118 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using ASN.1 in SDL
Figure 47 shows the resulting Organizer view. The symbol below the
MySDLSys system symbol is a dependency link that indicates that the
SDL system depends on an external ASN.1 module. Dependency links
for ASN.1 modules that are used by an SDL system were previously re-
quired by the Analyzer, but now only serve as comments and are option-
al.

If ASN.1 modules use other ASN.1 modules, dependency links between
the ASN.1 modules should be created.

Figure 46: Using an ASN.1 Module in SDL

Figure 47: Organizer View of SDL System Using ASN.1 Module

use MyModule;

System MySDLSys
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 119

Chapter 2 Data Types
Using ASN.1 Types in SDL
After the above preparations, the data types in MyModule can be used in
SDL. As an example, we will make an SDL system that converts a char-
acter string to the corresponding color. This is done by two signals:

• Signal GetColor has ASN.1 type IA5String as a parameter.

• When this signal is sent to the SDL system, the SDL system will re-
ply with signal ReturnColor, that has a BOOLEAN parameter in-
dicating whether there is a color that matches the string, and a
Color parameter.

The system diagram including these signal definitions is shown in
Figure 48 below.

The MSC below illustrates how the system is intended to be used.

Figure 48: SDL system diagram

use MyModule;

System MySDLSys 1(1)

SIGNAL
GetColor (IA5String),
ReturnColor (Boolean, Color);

MyBlock
ColorInterface

ReturnColor GetColor
120 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using ASN.1 in SDL
In order to know which values and which operators can be used on
ASN.1 types, it is necessary to look in “Translation of ASN.1 to SDL”
on page 700 in chapter 14, The ASN.1 Utilities, in the User’s Manual.

For example, Color is defined as an ENUMERATED type. By looking at
the mapping rules in “Enumerated Types” on page 712 in chapter 14,
The ASN.1 Utilities, in the User’s Manual, we see the list of operators
that can be used on Color. These are in this case num, <, <=, >, >=, pred,
succ, first, last, and also = and /=, which are always available.

Figure 49: MSC illustrating GetColor

MSC GetColor

env MySDLSys

GetColor

’blue’

ReturnColor

TRUE, blue

GetColor

’non-existing color’

ReturnColor

FALSE,
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 121

Chapter 2 Data Types
Figure 50 shows a fragment of an SDL process that uses Color. It con-
tains a loop over all values of Color, and illustrates how to declare vari-
ables of Color, how to use Color in new SDL sort definitions, and how
to use the operators first, last, and succ. Some notes on the frag-
ment:

• The type ColorToString is used to convert a color to an IA5String.
In the fragment we do actually the opposite. An alternative solution
would be to have a StringToColor Array (IA5String, Color)
because then no loop would have been needed (see also “Array” on
page 72). However, the purpose of the example was to illustrate how
to loop through all elements.

Figure 50: Using the Color type in SDL

Process MyProc

/* array to map color to
 * IA5String */
newtype ColorToString
 Array (Color, IA5String)
endnewtype;

DCL
c Color,
name ColorToString,
found BOOLEAN,
str IA5String;

send result
back

name(red) := ’red’,
name(yellow) := ’yellow’,
name(blue) := ’blue’

idle

GetColor
(str)

find the color that
has the given name

c := first(red) c will become the
first element

found :=
name(c) = str

found or
c = last(c)

ReturnColor
(found, c)
TO Sender

c := Succ(c) try next
color

idle

true false
122 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using ASN.1 in SDL
• Operator first in c := first(red) returns the element with the
lowest associated number. This ensures that we really get all ele-
ments when using the Succ operator. In this case we could just as
well have written c := red.

• Note also the use of the predefined ASN.1 type IA5String, which
is in fact a syntype of the predefined SDL sort Charstring.

Using Predefined ASN.1 Types in SDL

The predefined simple ASN.1 types can be used directly in SDL. In
most cases, the ASN.1 type has the same name in SDL, for example
ASN.1’s type NumericString is also called NumericString in SDL.
However, some predefined ASN.1 types contain white-space, like BIT
STRING. In SDL, the white-space is replaced with an underscore, so the
corresponding SDL sort is called BIT_STRING.

The operators on these predefined ASN.1 types are described in detail
in section “Using SDL Data Types” on page 42.

Using ASN.1 Encoding Rules with the SDL Suite

The ASN.1 constructs defined in ITU-T Recommendation X.690 and
X.691 are supported, which is explained in “ASN.1 Encoding and De-
coding in the SDL Suite” on page 2755 in chapter 59, ASN.1 Encoding
and De-coding in the SDL Suite, in the User’s Manual.
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 123

Chapter 2 Data Types
Sharing Data between SDL and TTCN
One more advantage of ASN.1 is that TTCN is also based on this lan-
guage. By specifying the parameters of signals to and from the environ-
ment of the SDL system with ASN.1 data types, this information can be
re-used in the TTCN suite for the specification of test cases for the sys-
tem.

This has the big advantage of making it easier to keep the SDL specifi-
cation consistent with the TTCN test specification.

The use of external ASN.1 in TTCN is covered in more detail in the
TTCN suite manual. In this section we will briefly illustrate how to
share data between SDL and TTCN using TTCN Link.

Supposing we have to write a test suite for the SDL system with the
Colors example, we would add a new diagram – a TTCN Test Suite,
for example called ColorTest – to the Organizer. In this test suite we
want to use definitions from the ASN.1 module MyModule that contains
the Colors data type. For this purpose we need to set a dependency link
between the ASN.1 module and the test suite. We do this by selecting
the ASN.1 module in the Organizer. By using Generate/Dependencies
we connect it to the TTCN test suite ColorTest.

We can also use TTCN Link to generate declarations from SDL system
MySDLSys. For this purpose, it is easiest to associate the SDL system
with the TTCN test suite. This is done by selecting the SDL system di-
agram in the Organizer and associate it with the TTCN test suite using
Edit/Associate. The Organizer View for the test suite now looks as in
Figure 52 below:

Figure 51: Sharing ASN.1 definitions between SDL and TTCN

TTCN

ASN.1

SDL

usesuses
124 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

 Using ASN.1 in SDL
We can generate a TTCN Link executable for the SDL system by select-
ing the SDL system in the Organizer and using Generate/Make select
standard kernel TTCN Link. Now we can start the TTCN suite by dou-
ble-clicking on test suite ColorTest. By using TTCN Link/Generate
Declarations, we can automatically generate the PCOs, ASP type defi-
nitions and ASN.1 type definitions. If we look at the result, we can see
that Color is present as an ASN.1 Type Definition by Reference. This
table is shown below.

Figure 52: Organizer view of a test suite that uses ASN.1

Figure 53: Resulting table in the TTCN suite
July 2003 Telelogic Tau 4.5 SDL Suite Methodology Guidelines mg-s0 125

Chapter 2 Data Types
Now this data type can be used in creating test cases, in constraints, etc.
If at some point in time the definition of Color would be changed (for
example if we would add a new color), then, in order to update the test
suite accordingly, we can select the TTCN table for Color. In the Ana-
lyzer dialog, we should select both Enable Forced Analysis and Re-
trieve ASN.1 Definitions. Now the TTCN test suite will be updated with
the new definition for Color.
126 mg-s0 Telelogic Tau 4.5 SDL Suite Methodology Guidelines July 2003

	2 Data Types
	Introduction
	Using SDL Data Types
	Predefined Sorts
	Bit
	Bit_string
	Boolean
	Character
	Charstring
	IA5String, NumericString, PrintableString, VisibleString
	Duration, Time
	Integer, Natural
	NULL
	Object_identifier
	Octet
	Octet_string
	Pid
	Real

	User Defined Sorts
	Syntypes
	Enumeration Sorts
	Struct
	Choice
	Inherits
	Predefined Generators

	Literals
	Operators
	Default Value
	Generators

	Using C/C++ in SDL
	Introduction
	Workflow
	Editing
	Analyzing
	Generating
	Simulating
	Summary of the AccessControl Example

	Import Specification
	Templates

	Accessing C/C++ Constructs not Fully Supported by CPP2SDL
	Accessing C/C++ Macros from SDL
	Function Pointers
	Unsupported Overloaded Operators

	C Specific Package ctypes
	Different Int Types and Float
	Charstar, Voidstar, Voidstarstar
	The Carray Generator
	The Ref Generator
	Pointers Will Lead to Data Inconsistency
	Pointers Are Unpredictable
	Pointers Do Not Work in Real Distributed Systems
	Pointers Are Not Portable
	Using Pointers in SDL
	Using Linked Structures with Pointers

	Using ASN.1 in SDL
	Organizing ASN.1 Modules in the SDL Suite
	Using ASN.1 Types in SDL
	Using Predefined ASN.1 Types in SDL
	Using ASN.1 Encoding Rules with the SDL Suite

	Sharing Data between SDL and TTCN

