
September 1997 SDT 3.2 Getting Started 13

Chapter

Table of Contents Close Close All

1 Introduction to Lan-

guages and Notations

This chapter begins with a brief introduction to SDL; the language,
its history, its main concepts and application areas.

Next follows an introduction to the MSC language (including High
level MSC), the Object Model notation and State Chart notation
used in SDT, and the ASN.1 notation.

Telelogic also provides the TTCN tool ITEX. For the sake of com-
pleteness, we have included a brief introduction to the TTCN nota-
tion.

After reading this chapter, you may want to deepen your knowl-
edge of SDL. In chapter 10, Object Oriented Design Using SDL in
the volume SDT 3.2 Methodology Guidelines, Part 2: Practical SDL
Guidelines, you will find information about how to take advantage
of the SDL-92 language in an SDT environment.

Also, a list of recommended literature dealing with various lan-
guage topics is enclosed at the end of this chapter; see “References”
on page 31.

14 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

Table of Contents
Benefits of a Specification Language ..15

General about the SDL Language...16
Modularity ..16
Object Oriented Design ..16
Graphical and Textual Notations ..17
Application Areas ...17

More about SDL ...17
Theoretical Model...17
Structure..18
Communication...19
Behavior..20
Data...20
Type Concept..21

The Message Sequence Chart Language ..22
History ..22
Plain MSC...22
High-level MSC..23
Graphical and Textual Notations ..24
Application Areas ...24

Object Model Notation ...25

State Chart Notation...27

ASN.1 - Abstract Syntax Notation One ..29

The TTCN Notation..29
TTCN - Tree and Tabular Combined Notation ..30

Tool Support..30

References..31

 Benefits of a Specification Language

September 1997 SDT 3.2 Getting Started 15
Table of Contents Close Close AllTable of Contents Close Close All

Benefits of a Specification Language
It is widely accepted that the key to successfully developing a system is
to produce a thorough system specification and design. This task re-
quires a suitable specification language, satisfying the following needs:

• A well-defined set of concepts.

• Unambiguous, clear, precise, and concise specifications.

• A basis for verifying specifications with respect to completeness
and correctness.

• A basis for determining whether or not an implementation conforms
to the specifications.

• A basis for determining the consistency of specifications relative to
each other.

• Use of computer-based tools to create, maintain, verify, simulate
and validate specifications.

• Computer support for generating applications without the need of
the traditional coding phase.

SDL, MSC and the tool SDT fulfil the demands outlined in the list
above.

16 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

General about the SDL Language
SDL is a standard language for specifying and describing systems1. It
has been developed and standardized by ITU in the recommendation
Z.100.

The development of SDL started in 1972 after a period of research
work. The first version of the language was issued in 1976, followed by
new versions in 1980, 1984, 1988, and 1992. The latest versions ex-
panded the language considerably, and today SDL is a “complete” lan-
guage in all senses.

There is a new and extended version of the SDL standard, called SDL-
96. In SDT, there is support for some of the new SDL-96 concepts.

Modularity
An SDL specification/design (a system) consists of a number of inter-
connected modules (blocks). A block can recursively be divided into
more blocks forming a hierarchy of blocks. The channels define the
communication paths through which the blocks communicate with each
other or with the environment. Each channel usually contains an un-
bounded FIFO queue that contain the signals that are transported on the
channel. The behavior of the leaf blocks is described by one or more
communicating processes. The processes are described by extended fi-
nite state machines.

Object Oriented Design
SDL furthermore supports object-oriented design by a type2 concept
that allows specialization and inheritance to be used for most of the SDL
concepts, like blocks, processes, data types, etc. The obvious advantage
is the possibility to design compact systems and to reuse components
which in turn reduces the required effort to maintain a system.

1. No distinction is made in SDL between the terms “specification” and “descrip-
tion”, although they generally have different meanings in SDL applications.

2. SDL has adopted the term type which corresponds to the term class used in many
of the OO notations and programming languages.

 More about SDL

September 1997 SDT 3.2 Getting Started 17
Table of Contents Close Close AllTable of Contents Close Close All

Graphical and Textual Notations
SDL gives a choice of two equivalent syntactic forms; a Graphical Rep-
resentation (SDL-GR) and a textual Phrasal Representation (SDL-PR).
SDT supports both notations.

Application Areas
Currently, SDL is mainly known within the telecommunication indus-
try, but it also has broader areas of application and is now gaining ac-
ceptance within the real-time software industry. The application areas
may be summarized as follows:

• Type of system described by SDL: Real-time, interactive, distribut-
ed.

• Type of information provided by SDL: Behavior and structure.

• Level of abstraction supported by SDL: From system overview to
functional detail.

More about SDL

Theoretical Model
The basic theoretical model of an SDL system consists of a set of ex-
tended finite state machines (FSM) that run in parallel. These machines
are independent of each other and communicate with discrete signals.

An SDL system consists of the following components:

• Structure
– hierarchical decomposition with system, block, process, and

procedure as the main building blocks
• Communication

– asynchronous signals with optional signal parameters
– remote procedure calls for synchronous communication

• Behavior
– processes

• Data
– abstract data types that can be inherited, generalized and spe-

cialized
– ASN.1 data types according to Z.105

18 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

• Type Concept
– describing type hierarchies with inheritance, generalization and

specialization

Structure
Figure 1 shows the four main hierarchical levels in SDL: system, block,
process, and procedure.

In addition, there is a service concept that can be used within processes.
Procedures can be used in both processes and services.

Figure 1: The Architectural View of an SDL System

......
System Example

Bl1

Bl2

C1

.....

C2

C3

.....

.....

Block Bl1
......

Proc1

Proc2

(1,1)

(0,5)

R1

R2

R3

.....

.....

.....

Process Proc2
......

 (0,5)

State1

Pr1

....

Pr1

Procedure Pr1

 More about SDL

September 1997 SDT 3.2 Getting Started 19
Table of Contents Close Close AllTable of Contents Close Close All

Communication

In SDL, there is no global data. This approach requires that information
between processes, or between processes and the environment, must be
sent with signals and optional signal parameters. Signals are sent asyn-
chronously, that is, the sending process continues executing without
waiting for an acknowledgment from the receiving process.

Synchronous communication is possible via a shorthand, remote proce-
dure call. This shorthand is transformed to signal sending with an extra
signal for the acknowledgment.

Figure 2: Sending Signals Between Two Processes.

Block Bl1

SIGNAL

Proc1
Proc2

(1,1) (1,1)R1 R2
.....

Sig1

Sig1(Integer);

Signal declaration

Signal listSending process Receiving

Proc1 Proc2

Sig1
(5)

Sig1
(Number)

DCL
Number Integer;

Output symbol Input symbol

process

20 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

Behavior
The dynamic behavior in an SDL system is described in the processes.
The system/block hierarchy is only a static description of the system
structure. Processes in SDL can be created at system start, or created
and terminated dynamically at runtime. More than one instance of a
process can exist. Each instance has a unique process identifier (PId).
This makes it possible to send signals to individual instances of a pro-
cess. The concept of processes and process instances that work autono-
mously and concurrently makes SDL a true real-time language.

Data
The abstract data types concept used within SDL is very well suited to
a specification language. An abstract data type is a data type with no
specified data structure. Instead, it specifies a set of values, a set of op-
erations allowed on the data type and a set of equations that the opera-
tions must fulfil. This approach makes it very simple to map an SDL
data type to data types used in other high-level languages.

Alternatively, ASN.1 types can be used in SDL. This is useful when
specifying or implementing telecommunication applications that make
use of ASN.1. ITU-T Recommendation Z.105 defines how ASN.1 is
used in combination with SDL. For more information on ASN.1, see
“ASN.1 - Abstract Syntax Notation One” on page 29.

Figure 3: Creation of a New Process Instance at Runtime.

Process Proc2
......

 (0,5)

State1

Pr1

....

Create request
(creation of a new
process instance
of type Pr1)

 More about SDL

September 1997 SDT 3.2 Getting Started 21
Table of Contents Close Close AllTable of Contents Close Close All

Type Concept
The object-oriented concepts of SDL give the user powerful tools for
structuring and reuse. The concept is based on type definitions. All
structural building blocks can be typed. Type definitions can be placed
anywhere in the system, and also in packages outside the system.

One of the major benefits of using an object oriented language is the
possibility to create new objects by adding new properties to existing
objects, or to redefine properties of existing objects. This is what is
commonly referred to as specialization.

In SDL, specialization of types can be accomplished in two ways:

• A subtype may add properties not defined in the supertype. One
may, for example, add new transitions to a process type, add new
processes to a block type, etc.

• A subtype may redefine virtual types and virtual transitions defined
in the supertype. It is possible to redefine the contents of a transition
in a process type, to redefine the contents/structure of a block type,
etc.

Figure 4: Abstract Data Type Example.

NEWTYPE Boolean
 LITERALS
True, False;
 OPERATORS
 "NOT"
:Boolean -
>Boolean;
 "="
:Boolean,Boolea
n ->Boolean;

 AXIOMS

"NOT"(True)
=False;

" " l

Set of equations that the
OPERATORS must ad-
here to

Set of values

Set of allowed operations
(OPERATORS)

22 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

The Message Sequence Chart Language

History
During the last years, ITU has made a considerable effort in standardiz-
ing a formal language which defines Message Sequence Charts (MSC).
In the summer of 1992, a first version of the MSC recommendation was
published.

As defined in the recommendation Z.120, the MSC language offers a
powerful complement to SDL in describing the dynamic behavior of an
SDL system. Its graphical representation is well suited for presenting a
complex dynamic behavior in a clear and unambiguous way which is
easy to understand for the user.

There is a new and extended version of the MSC standard, called
MSC’96, as defined in the current Z.120. In SDT, there is support for
the most important MSC’96 extensions. See “Language Support” on
page 27 in the volume SDT 3.2 Release and Documentation Guide for
more information.

Plain MSC
An MSC describes one or more traces from one node to another node of
an abstract communication tree generated from an SDL specification.

Basically, the information interchange is carried out by sending mes-
sages from one instance to another. In an SDL specification, those mes-
sages would coincide with the signals which are sent from one process
and consumed in another process. The instances would correspond to
any part of the specification (an SDL system, a block or a process).

 The Message Sequence Chart Language

September 1997 SDT 3.2 Getting Started 23
Table of Contents Close Close AllTable of Contents Close Close All

An MSC can reference another MSC using an MSC reference symbol.
MSC references can for example be used to have one MSC describing
an initialization sequence and then reference this MSC from a number
of other MSCs.

The reference symbol may not only refer to an MSC but can also con-
tain MSC reference expressions that reference more than one MSC.
This construct gives a very compact MSC representation and it also pro-
vides an excellent means for reusability of certain MSCs.

High-level MSC
A high-level MSC (HMSC) provides a means to graphically define how
a set of MSCs can be combined. Contrary to plain MSCs, instances and
messages are not shown within an HMSC, but it focus completely on
the composition aspects. HMSCs can be hierarchically structured, i.e. it
is possible to refine HMSCs by other HMSCs. The power of the MSC
language is considerably improved with the new concepts introduced
with HMSCs. It is e.g. much easier to specify a main scenario together
with all accompanying exceptions.

Figure 5: An Example of a Message Sequence Chart.

Message Instance

24 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

Graphical and Textual Notations
The MSC language supports two notations which are equivalent. Be-
sides the graphical notation (MSC-GR), a textual notation (MSC-PR) is
standardized since the autumn of 1994.

Application Areas
Among the various application areas, we have selected the following:

• Producing documents with the purpose of defining the requirements
of a system.

• Facilitating the design phase, by identifying and documenting a
multitude of dynamic cases before starting designing with SDL.

• Presenting the execution of a simulation as a graphical output which
is easy to understand and which can later on be verified against a
reference. Message Sequence Charts can be verified against an SDL
system using SDT.

• Presenting the execution trace of an SDL system during an interac-
tive simulation and generation of reports.

Figure 6: Example of an HMSC

 Disconnected

Connection_Request

 Wait_For_Response

Connection_Confirm Connection_Rejected

 Connected

 Object Model Notation

September 1997 SDT 3.2 Getting Started 25
Table of Contents Close Close AllTable of Contents Close Close All

Object Model Notation
The object model notation used in SDT is an adaption of the notations
used in OMT (Object Modeling Technique) and UML (Unified Model-
ing Notation). The OMT/UML notation is a commonly accepted graph-
ical notation that allows a user to draw diagrams that describe objects
and the relations between them.

The most important concept in an object model is the class definition.
A class is a description of a group of similar objects that share the prop-
erties defined by the class. The properties of a class are described with
attributes and operations. The object model notation for a class is exem-
plified in Figure 7, where the second class definition also shows how to
define attributes and operations.

Classes may inherit attributes and operations from other classes, known
as specialization and generalization. The object model notation for this
is shown in Figure 8.

Classes may be physically or logically related to each other. This is
shown in the object model by means of associations as shown in

Figure 7: A Collapsed Class Symbol and a Class Symbol
With Attributes and Operations.

Figure 8: Inheritance Between Classes.

Class1

attrib1
attrib2:atype

op1
op2 (arg1: type1): resulttype

Class1

SuperClass

SubClass1 SubClass2

26 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

Figure 9. An association may have a name and/or the endpoints of the
association may be labeled by the role of this endpoint.

Aggregation is special kind of association, indicating a “consists of” re-
lation. It has its own notation as shown in Figure 10.

The endpoints of associations and aggregations may have a multiplicity
according to the following:

• No multiplicity (exactly one)
• * (zero or more)
• 0,1 (zero or one)
• 1..* (one or more)
• 1..3,6,10..* (several intervals: 1, 2, 3, 6, 10 or more)

Figure 9: Associations between classes

Figure 10: Aggregation

Class1

Class2 Class3

AssociationName

Class3sRole

Class1sRole

Assembly

Part1 Part2

1..* *

 State Chart Notation

September 1997 SDT 3.2 Getting Started 27
Table of Contents Close Close AllTable of Contents Close Close All

Besides class definitions, object models may also contain objects (in-
stances) and their relations. The relation that exists between objects are
links, which corresponds to associations for classes. The object symbol
has one field containing the object name and a reference to the class
(“name:class”), and an attribute field where constant or default values
can be assigned to the object attributes. See Figure 11.

State Chart Notation
The state chart notation used in SDT is a subset of the notations used in
OMT (Object Modeling Technique) and UML (Unified Modeling No-
tation).

A state chart model is suitable to use together with class and object
models. The descriptions of the behavior of a class in a class diagram is
collected into a state chart which describes the dynamic view of the
model by means of states and transitions between states.

A state symbol describes the name of the class, state variables, and in-
ternal activities. State variables highlight attributes of the class which is
used or in some way affected by the behavior described in the state
chart. Internal activities are taking place upon entering the state, while
in the state and when exiting the state. Activities are described by spec-
ifying events and associated actions. Figure 12 shows a collapsed state
and a state with state variables and events.

Figure 11: Objects related by links

c:ctrl

d1:door d2:door

DoorToCtrl DoorToCtrl

nr=1 nr=2

nrof doors=2

28 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

A transition symbol is an arrow which typically connects two state sym-
bols. A transition is triggered by an event together with a condition, and
a transition then executes an action; see Figure 13.

The start symbol denotes the starting point of a state machine described
by a state chart and the termination symbol denotes the point of termi-
nation of a state machine. Figure 14 shows a simple state machine, de-
scribing the behavior of a door, including a start symbol and a termina-
tion symbol.

Figure 12: A collapsed state symbol and a state symbol with state variables
and events

Figure 13: The transition from state1 to state2 is triggered by the event
my_event and the condition that attr1 is less than attr2

Figure 14: A simple state chart with a start symbol and a termination symbol

State1

State1
attrib1
attrib2:atype

entry / action1
exit / action2
do / action3
event1 / action1

state1

state2

my_event(param1) [attr1 < attr2] / my_action^object1.notify)

Unlocked

Locked

DoorOpen

Unlock Lock

CloseOpen

shutdown

 ASN.1 - Abstract Syntax Notation One

September 1997 SDT 3.2 Getting Started 29
Table of Contents Close Close AllTable of Contents Close Close All

ASN.1 - Abstract Syntax Notation One
ASN.1 (ITU-T Recommendation X.680-683) is a generic notation stan-
dardized by ISO and ITU for the specification of data types and values.
The general idea behind ASN.1 is to describe data type information in-
dependent of the transfer format.

The original use of ASN.1 has been the information description in high-
level protocols like FTAM, CMIP, MHS, DS, VT, etc. Today it is also
frequently used in numerous other telecommunication protocols and ap-
plications.

ASN.1 data types and values can be defined in modules that can be used
in TTCN and in SDL. This makes it possible to use the data types of an
application both in the SDL specification and in the TTCN test suite,
which assures consistency between the information transferred in the
system specification and the test specification.

The TTCN Notation
As the use of standards within the world of Information Technology and
Telecommunications has increased tremendously during the last de-
cade, so has the need for methods and tools that support the verification
and validation of both the standards and their actual implementations.

This need has been addressed by ISO and ITU in the “Framework and
Methodology for Conformance Testing of Implementations of OSI and
ITU Protocols”. The framework has for some time had the status of an
international standard as ISO/IEC 9646 (or X.290).

The standard introduces the concept of abstract test suites (consisting of
abstract test cases). This is a description of a set of tests that should be
executed for a system. The tests should be described using a black-box
model, i.e. only control and observation using the available interfaces.

The abstract tests are to be described using a formal language rather
than using informal natural language. As part of the standard the lan-
guage TTCN is defined in order to describe the abstract tests.

30 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

TTCN - Tree and Tabular Combined Notation
With TTCN a test suite is specified. This is a collection of various test
cases together with all the declarations and components it needs.

Each test case is described as an event tree. In this tree behaviors like
“First we send A, then either B or C will be received, if it was B we will
send D...” are described. The new version of TTCN allows several event
trees to be running concurrently.

TTCN is abstract in the sense of being independent of the actual test
systems. This means that a test suite in TTCN for one application (pro-
tocol, system...) can be used in any test environment for that applica-
tion.

The use of TTCN has increased tremendously during the last years. This
has been augmented by the significant amount of TTCN test suites re-
leased by various standardization bodies. TTCN is however not only
used in standardization work. The language is very suitable for all kinds
of functional testing for communicating systems. This has led to a wide
usage also within the industry.

The specifications of the messages being sent and received can be de-
fined using either the built-in form of TTCN or by using ASN.1.

Tool Support
Telelogic has been a firm supporter of SDL for a long time. We co-op-
erate with ITU in the on-going work of improving the language and
with ETSI in using SDL for defining protocol standards. We initiate and
participate in international research programs on how to use the lan-
guage in different application areas (such as the European Community
programs RACE, ESPRIT and EUREKA). Our experience and know-
how in these areas is put to practice when we develop software engi-
neering tools that support the languages.

A tool for a specification language must be able to create, maintain, and
analyze a specification. It is also fundamental that the tool can simulate,
validate and generate application code to other high level languages.

SDT can do all of this.

 References

September 1997 SDT 3.2 Getting Started 31
Table of Contents Close Close AllTable of Contents Close Close All

References
[1] ITU Recommendation Z.100:
Specification and Description Language (SDL)
1994, ITU, General Secretariat- Sales Section,
Places des Nations, CH-1211 Geneva 20.

[2] Annex A, B, C1, C2 D, E, F1, F2 and F3 to Z.100. as above

[3] ITU Recommendation Z.120:
Message Sequence Charts (MSC)
1992, ITU General Secretariat -Sales Section
Place des Nations, CH-1211 Geneva 20

[4] Ferenc Belina, Dieter Hogrefe and Amardeo Sarma:
SDL with Applications from Protocol Specification
Prentice Hall International (UK) Ltd. 1991
ISBN 0-13-785890-6

[5] Belina, Hogrefe:
The CCITT Specification and Description Language SDL.
Computer Networks and ISDN System
1988/1989 North-Holland, Amsterdam

[6] Braek, Hasnes, Haugen:
Engineering real-time systems with an object-oriented methodology
based on SDL.
SISU Project Report 1992
Norwegian Computer Center
PO Box 114, N-0314 Oslo 3, Norway

[7] Faergerman, Marques (editors):
SDL 89: The language at work.
Proceedings of the Fourth SDL Forum,
North Holland, Amsterdam (1989)

[8] Faergerman, Reed (editors):
SDL 91: Evolving Methods.
Proceedings of the Fifth SDL Forum,
North Holland, Amsterdam (1991)

[9] Faergerman, Sarma (editors):
SDL 93: Using Objects.

32 SDT 3.2 Getting Started September 1997

Chapter 1 Introduction to Languages and Notations

Table of contents Close Close AllTable of Contents Close Close AllTable of Contents Close Close All

Proceedings of the Sixth SDL Forum,
North Holland, Amsterdam (1993)

[10] Haugen, Möller-Pedersen:
Tutorial on object-oriented SDL.
SISU Project Report 91002
Norwegian Computer Center
PO Box 114, N-0314 Oslo 3, Norway

[11] Behcet Sarikaya:
Principles of Protocol Engineering and Conformance Testing.
Simon & Schuster International (1992)

[12] Sarraco, Smith, Reed:
Telecommunications system engineering using SDL.
North-Holland, Amsterdam (1989)

[13] Saracco, Tilanus (editors):
SDL ‘87 State of the art and future trends.
Proceedings of the Third SDL Forum
North Holland, Amsterdam (1987)

[14] K.J. Turner (editor):
Using Formal Description Techniques -
An Introduction to Estelle, LOTOS and SDL.
John Wiley & Sons (1992)

[15] A. Olsen, O.Færgemand, B. Møller-Pedersen, R. Reed,
J.R.W. Smith:
Systems Engineering Using SDL-92.
Elsevier (1994)
ISBN 0-444-89872-7

[16] ITU Recommendation X.680-683
Abstract Syntax Notation One (ASN.1)
1994, ITU, General Secretariat- Sales Section,
Places des Nations, CH-1211 Geneva 20

[17] ITU Recommendation Z.105
SDL Combined with ASN.1 (SDL/ASN.1)
1995, ITU, General Secretariat- Sales Section,
Places des Nations, CH-1211 Geneva 20

